

Copyright © 1999, 2011 by Wilson WindowWare
All Rights Reserved

No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without
the express written permission of Wilson WindowWare, Inc. Information in this
document is subject to change without notice and does not represent a commitment by
Wilson WindowWare, Inc.

The software described herein is furnished under a license agreement. It is against the
law to copy this software under any circumstances except as provided by the license
agreement.

TRADEMARKS
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

WinBatch is a trademark of Wilson WindowWare, Inc.

Table of Contents

TABLE OF CONTENTS

TABLE OF CONTENTS .. I

INTRODUCTION : BECOMING A PROGRAMMER .. XI

THERE WILL BE A TEST… ... XI

CHAPTER 1 : THE GOLEM PRINCIPLE ... 13

BASICS OF PROGRAMMING .. 13
HOW COMPUTER APPLICATIONS WORK ... 14
LINGUA CYBER .. 14
THE SORCERER’S APPRENTICE ... 16
PRINCIPLES OF DESIGNING APPLICATIONS ... 19

Step One: Defining Objectives.. 19
Step Two: Defining Communications ... 20
Step Three: Defining Tasks ... 21
Step Four: Writing the Code ... 22
Step Five: Testing, Testing, and Retesting .. 22
Step Six: Getting Outside Opinions .. 23
Step Seven: Documenting .. 23

SUMMARY .. 24

CHAPTER 2 : THE PROGRAMMER'S WORKROOM ... 25

THE INTEGRATED DEVELOPMENT ENVIRONMENT ... 25
HOW TO USE THIS BOOK .. 25
COMPILED VERSUS INTERPRETED PROGRAMS .. 26
A BRIEF HISTORY OF THE IDE ... 27

An Introduction to the WinBatch IDE ... 28
A FIRST PROGRAM: HELLO, WORLD .. 29
WINBATCH STUDIO FEATURES AND TOOLS ... 32

File Operations ... 33
Cut, Copy, and Paste Operations.. 34
Undo and Redo Operations .. 34
Find, Find Next, and Replace Operations ... 34
Bookmark Operations .. 35
Tools ... 35
Debugging Tools ... 36

SUMMARY .. 38

CHAPTER 3 : DIALOGS AND THE DIALOG EDITOR .. 39

HOLDING A FORMAL CONVERSATION ... 39
AN INTRODUCTION TO THE DIALOG EDITOR .. 39
PREDEFINED DIALOGS ... 40
WIL DIALOG EDITOR .. 40
A SAMPLE DIALOG: WILDIALOG.WBT .. 44
DIALOG CONTROLS ... 48

Pushbuttons <PUSHBUTTON> .. 50
Radiobuttons <RADIOBUTTON> .. 51
Checkboxes <CHECKBOX> .. 53
Edit Boxes <EDITBOX> ... 54

i

Introduction to Programming

Static (Fixed) Text <STATICTEXT> .. 55
Variable Text <VARYTEXT> .. 55
Item (List) Boxes <ITEMBOX> .. 56
File List Boxes <FILELISTBOX> ... 57
Calendar <CALENDAR> .. 58
ComControl <COMCONTROL> .. 58
The DropList Box <DROPLISTBOX> ... 59
The GroupBox control <GROUPBOX> .. 60
The Spinner Control <SPINNER> ... 60
The Multi‐Line Box <MULTILINEBOX> ... 60
The Picture Button Control <PICTUREBUTTON> ... 61
The Picture Control <PICTURE> .. 61

MENUS .. 61
TAB ORDER .. 62
SUMMARY .. 63

CHAPTER 4 : COMPUTER VOCABULARY – PART I .. 65

SIMPLE NOUNS – DATA TYPES AND VARIABLES ... 65
VARIABLES VERSUS CONSTANTS .. 66
WINBATCH DATA TYPES ... 66

Integer Constants ... 66
Floating‐Point Constants .. 66
String Constants ... 67
Array ... 68
Huge Numbers ... 73

PREDEFINED CONSTANTS ... 73
Predefined String Constants ... 74
Predefined Floating‐Point Constants ... 75

WINBATCH PROGRAM VARIABLES ... 75
VARIABLE NAMES .. 76
STRING VARIABLE CONVERSION .. 77
SUBSTITUTION ... 77
LISTS ... 79
KEYWORDS ... 79
SUMMARY .. 80

CHAPTER 5 : COMPUTER VOCABULARY – PART II ... 81

SIMPLE VERBS – OPERATORS AND OPERATIONS .. 81
MATH OPERATORS ... 82
GROUPING OPERATORS () ... 82
THE ASSIGNMENT OPERATOR (=) .. 83
THE ADDITION AND SUBTRACTION OPERATORS (+ AND –) .. 84
THE MULTIPLICATION AND DIVISION OPERATORS (* AND /) ... 86
THE MODULUS OPERATOR (MOD) ... 87
THE EXPONENTIAL OPERATOR (**) .. 87
LOGICAL OPERATORS .. 88

The Logical AND Operator (&&) .. 88
The Logical OR Operator (||) ... 88
The Logical NOT Operator (!) ... 89

RELATIONAL OPERATORS ... 89
The Equality and Inequality Operators (== and != or <>) ... 89
The Greater‐Than and Less‐Than Operators (>, >=, <, and <=) .. 90

BITWISE OPERATORS .. 90

ii

Table of Contents

The Left‐Shift and Right‐Shift Operators (<< and >>) ... 92
The Bitwise AND, OR, and XOR Operators (&, |, and ^) ... 93
The Bitwise NOT Operator (~) .. 94

PRECEDENCE AND EVALUATION ORDER .. 94
COMMENTS .. 96
UNARY OPERATORS (VARIABLE REFERENCE OPERATORS) ... 96
BINARY STRING OPERATIONS ... 97
SUMMARY .. 97

CHAPTER 6 : COMPUTER VOCABULARY – PART III .. 99

STRINGS AND TEXT OPERATIONS ... 99
STRING‐MANIPULATION FUNCTIONS ... 99
STRING‐PARSING OPERATIONS ... 100

The ParseData Function ... 101
The StrScan and StrSub Functions .. 102
The ItemCount and ItemExtract Functions .. 104
Using the ArrayFileGet function ... 104

DIFFERENCES IN THE STRING‐PARSING TECHNIQUES ... 105
SEARCH‐AND‐REPLACE OPERATIONS .. 105

The StrIndex and StrIndexNc Functions ... 105
The StrReplace Function .. 107
Selective Search and Replace ... 107

STRING‐CONVERSION OPERATIONS ... 109
OTHER STRING CONVERSIONS .. 110
STRING‐COMPARISON OPERATIONS... 111
OTHER STRING OPERATIONS .. 113

The StrCharCount Function .. 113
The StrFill Function ... 113
The StrFix Functions ... 113
The StrTrim Function .. 114
Additional String Functions .. 114

LISTS AND LIST‐SELECTION OPERATIONS ... 114
List Initialization ... 115
List Creation ... 116
List Display .. 119
List‐Selection Handling ... 120
Lists of Lists .. 122
List Item Removal ... 124

PASSWORDS ... 124
KEYBOARD INPUT ... 125
SUMMARY .. 125

CHAPTER 7 : A TOOLKIT FOR OPERATIONS ... 127

FUNCTIONS AND SUBROUTINES ... 127
FUNCTIONS ... 127

User Defined Functions .. 129
SUBROUTINES ... 131

The gosub Statements .. 133
The Subroutines ... 134
Subprocedure Execution .. 137

EXTERNAL BATCH FILES ... 138
The First External Program ... 139
The Second External Program .. 141

iii

Introduction to Programming

EXECUTABLE PROGRAMS ... 142
SUMMARY .. 143

CHAPTER 8 : GOING WITH THE FLOW ... 145

CONTROLLING OPERATIONS ... 145
BRANCHING AND PROGRAM CONTROL MECHANISMS ... 145
GOTO AND GOSUB BRANCHES .. 146
FORMS OF CONTROLLED BRANCHING ... 148
IF DECISIONS ... 148
TRUE OR FALSE .. 150
SIMPLE TESTS .. 151
COMPOUND TESTS ... 153
COMPLEX TESTS... 154

Nested If..Else..Endif Statements ... 156
SWITCH/CASE DECISIONS .. 158
FALL‐THROUGH EXECUTION ... 160
DUPLICATE CASE STATEMENTS ... 163
DEFAULT CASES ... 164
LOOPS ... 165

For Loops .. 165
ForEach Loop .. 167
For Loop Interruption ... 168
While Loops .. 169
While Loops Interruption ... 170

SUMMARY .. 170

CHAPTER 9 : IT'S ALL IN THE NUMBERS .. 173

MATHEMATICAL OPERATIONS .. 173
SIMPLE NUMERICAL MANIPULATIONS .. 173

The Abs and Fabs Functions ... 173
The Average Function .. 174
The Ceiling and Floor Functions ... 175
The Decimals Function ... 176
The Int Function ... 177
The Min and Max Functions ... 177

NUMBER TESTING .. 177
Pseudo‐Random Numbers ... 178

LARGE AND TRANSCENDENTAL NUMBERS ... 180
The Exp Function .. 180
The LogE Function .. 180
The Log10 Function .. 181
The Sqrt Function ... 181

TRIGONOMETRIC OPERATIONS ... 182
The Sin, Cos, and Tan Functions ... 183
The ASin, ACos, and ATan Functions .. 184
The ASin Function... 185
The ACos Function .. 185
The ATan Function ... 186
The Hyperbolic Functions: SinH, CosH and TanH ... 187

DATE AND TIME OPERATIONS ... 188
Date/Time Format .. 188
The TimeDate Function .. 188
The TimeYmdHms Function ... 189

iv

Table of Contents

The TimeJulianDay Function and the Day of the Week ... 189
The TimeJulToYmd Function .. 191
Time‐Difference Calculations ... 191
Pause and Wait Functions .. 192

MATHEMATICS IN THE REAL WORLD .. 193
Accepting Input Variants .. 193

DOING THE MATH .. 197
FORMATTING VALUES ... 199

Formatting Currency .. 200
Formatting a Date .. 201

SUMMARY .. 202

CHAPTER 10 : SHOE BOXES AND FILE CABINETS .. 203

DATA STORAGE AND FILE OPERATIONS ... 203
FILE AND DIRECTORY CONCEPTS ... 203
HARD DRIVE MANAGEMENT .. 204
A UTILITY FOR DIRECTORY OPERATIONS ... 204

Planning the Utility ... 205
File Specification .. 205
Drive/Directory Specification ... 206
Exploring the CallFileList Utility .. 206

THE WINDOWS COMMON FILE DIALOG ... 209
Features of the Common File Dialog .. 210
Invoking the Common File Dialog .. 212
The Label Parameter .. 213
The Directory Parameter .. 213
The Filetypes Parameter .. 213
The Default Filename Parameter ... 214
The Flag Parameter .. 214
Returning a File Name .. 214

DIRECTORY INFORMATION FUNCTIONS .. 215
Converting Long and Short File Names .. 215
Locating Default Directories ... 215
Getting Drive Information .. 217
The DiskScan Function ... 217
The DiskSize and DiskFree Functions ... 219

HUGE NUMBERS .. 222
FILE MANAGEMENT.. 222
A SHORTCUT FOR LISTS ... 223
FILE‐OPERATION FUNCTIONS ... 224

Handling File I/O ... 225
The FileOpen Function ... 226
The FileRead Function .. 226
The FileWrite Function ... 227
The FileClose Function ... 228
Manipulating Files .. 228
The FileAppend Function ... 228
The FileCopy Function .. 229
The FileMove Function ... 229
The FileRename Function ... 229
The FileCompare Function ... 230
The FileDelete Function ... 230
Additional File Functions .. 230

v

Introduction to Programming

BINARY FILE OPERATIONS .. 232
SUMMARY .. 233

CHAPTER 11 : WINDOWS AND GUI OPERATIONS ... 235

PAINTS, PENS, AND WINDOW BOXES ... 235
CREATING A WINDOW .. 235
WINDOW COORDINATES ... 240
LABELING THE WINDOW .. 241
WINDOWS WITHIN WINDOWS ... 241
DISPLAYING TEXT ... 244

Font Styles .. 244
Pitch and Family ... 245
Displaying the Message .. 245

ADDING BUTTONS .. 247
A QUICK REVIEW ... 248
MORE ABOUT COLORS .. 249
DRAWING IN A WINDOW .. 253
AN ALTERNATIVE TO BOXBUTTONWAIT ... 256
THE BOXDRAWCIRCLE AND BOXDRAWRECT FUNCTIONS ... 257
DRAWING STACK MANAGEMENT .. 259
PARTIAL CLEARING ... 259
FORMATTING TEXT IN WINDOWS .. 260
SUMMARY .. 263

CHAPTER 12 : MOUSING AROUND ... 265

GETTING AWAY FROM THE KEYBOARD .. 265
MOUSE OPERATIONS IN WINDOWS ... 265

Forcing Mouse Operations ... 265
Tracking the Mouse .. 267

SUMMARY .. 271

CHAPTER 13 : POKING INSIDE THE BOX .. 273

THE INTCONTROL FUNCTIONS ... 273
THE INTERNAL CONTROL TEST FUNCTION ... 273
GENERAL‐PURPOSE FUNCTIONS .. 274
WINDOW INTERACTIONS AND WINDOW HANDLES ... 274
SYSTEM FONT SELECTION .. 274
FILE OPERATIONS ... 275

File Moves .. 275
File‐Sharing Mode .. 275

FILE LIST BOX SETTINGS .. 276
GENERAL LIST BOX SETTINGS ... 277
APPLICATION CONTROL FUNCTIONS ... 277

Windows Messages .. 277
WINBATCH CONTROL ... 279

Exit Code .. 279
Icon States .. 279
Program File Names ... 280
WIL Termination Codes .. 280

WINDOWS RESTARTING .. 280
Windows System Restart ... 281

APPLICATION CLOSING .. 281
ERROR MESSAGES .. 281

vi

Table of Contents

ERROR HANDLING .. 282
CREATEPROCESS FLAGS ... 283
MEMORY ACCESS .. 283
INPUT TIMING AND WAITS ... 283

Timeouts .. 284
The SendKey Function .. 284

MISCELLANEOUS OPERATIONS .. 285
Language Control ... 285
System Menus .. 285

SUMMARY .. 286

CHAPTER 14 : DYNAMIC DIALOGS, MENUS, CALLBACKS ... 287

MAKING DYNAMIC DIALOGS .. 287
ADDING DIALOG PROCEDURE CODE ... 289

Functions vs Subroutines ... 297
Exercise_C .. 300
Exercise_D .. 301
Exercise_E .. 303
Exercise_F ... 304

SUMMARY .. 304

CHAPTER 15 : WHEN THINGS GO WRONG .. 307

DEBUGGING APPLICATIONS .. 307
LEARNING TO DEBUG .. 308
DEBUGGING IN AN IDE ... 308
DEBUGGING TOOLS .. 311

Debugging during Execution .. 311
Tracing Execution Step by Step .. 314
Terminating Execution ... 316

DEBUGGING OPTIONS ... 318
Debug ... 318
DebugTrace .. 319
Modes: ... 320
Mode Option Flags: .. 321
Immediate Action Codes: ... 322
Message or Pause Statements ... 323
DebugData ... 324

DEBUGGING AS A PROCESS .. 324
Debug Step 1: Run the Program ... 324
Debug Step 2: Test the Elements ... 324
Debug Step 3: Watch Branches, Tests, and Variable Tests .. 325

UNAVOIDABLE BUGS .. 326
SUMMARY .. 326

CHAPTER 16 : WINBATCH EXTENDERS .. 327

ADDING EXTENDED AND CUSTOM FUNCTIONS .. 327
THE WILX LANGUAGE EXTENDER ... 327

Getting Library Information ... 328
Converting between Numeric Systems .. 328
Accessing Drives ... 329
Accessing Windows API Functions ... 329
Verifying Credit Card Numbers .. 330
Using Utility Functions ... 330

vii

Introduction to Programming

NETWORK EXTENDERS .. 331
Identifying the Network ... 331
Windows Platform Version .. 332

QUERYING ACROSS THE NETWORK .. 332
ADSI EXTENDER: WWADS44I.DLL ... 334
COMPILER OPTIONS FOR WIL EXTENDERS .. 334
CUSTOM EXTENDER DLLS .. 335
SUMMARY .. 335

APPENDIX A : WINBATCH DEMOS .. 337

REAL WORLD WIL SCRIPTS .. 337
CHAPTER 1 SAMPLES .. 337

WordCnt.wbt .. 337
CHAPTER 2 SAMPLES .. 338

Hello World.wbt ... 338
CHAPTER 3 SAMPLES .. 338

AskYesNo.wbt .. 338
AskLine.wbt .. 339
WILDialog.wbt .. 339
PushButton.wbt ... 341
RadioButton.wbt .. 343
CheckBox.wbt ... 346
EditBox.wbt .. 347
Listbox.wbt ... 348
FileListBox.wbt ... 349
ComControl.wbt ... 350

CHAPTER 4 SAMPLES .. 351
StringTest.wbt .. 351
ArrayTest.wbt ... 352
HugeMath.wbt ... 355
VariTest.wbt ... 355
ListTest.wbt .. 356

CHAPTER 5 SAMPLES .. 356
MathTest.wbt ... 356
SimpleCalculator.wbt ... 361

CHAPTER 6 SAMPLES .. 363
SearchList.txt .. 363
SearchTest.wbt ... 363
SearchTest2.wbt ... 364
SearchTest3.wbt ... 365
SearchTest4.wbt ... 366
StrIndex.wbt ... 367
Blake.txt ... 367
SearchReplace.wbt ... 367
StrCmp.wbt .. 369
RelationalOperators.wbt .. 370
Parts.lst... 371
ListSelection.wbt .. 372
ListSelection2.wbt .. 374
Password.wbt ... 376
WaitForKey.wbt ... 378

CHAPTER 7 SAMPLES .. 378
Music.txt... 378

viii

Table of Contents

HyperLink.wbt .. 379
GetData.wbt ... 382
Parts.lst... 384
ExternCall.wbt .. 384
SortData.wbt .. 384
Run_EXE.wbt .. 385

CHAPTER 8 SAMPLES .. 385
Logic.wbt .. 385
Select1.wbt ... 387
Select2.wbt ... 388
Select3.wbt ... 390
Prime.wbt ... 391
ForEach.wbt ... 391
Prime2.wbt ... 392

CHAPTER 9 SAMPLES .. 393
Average.wbt ... 393
Floor_Ceiling.wbt ... 393
Decimals.wbt .. 394
Min_Max.wbt ... 394
TestNumber.wbt .. 394
Random.wbt ... 396
Exponential.wbt ... 397
LogE.wbt ... 399
Log10.wbt ... 400
SquareRoot.wbt ... 401
Trig.wbt .. 402
ArcSin.wbt .. 403
ArcCosine.wbt .. 405
ArcTangent.wbt .. 406
HyperTrig.wbt .. 407
TimeCheck.wbt ... 409
TimeCheck2.wbt ... 410
TimeCheck3.wbt ... 411
Mortgage.wbt .. 412
FormatCurrency.wbt .. 417

CHAPTER 10 SAMPLES .. 419
CallFileList.wbt ... 419
DirTest.wbt ... 421
DirTest2.wbt ... 422
Free Disk Space.wbt ... 422
FormatNumber.wbt ... 424
Phone.lst .. 425
ShowList.wbt .. 426
PhoneList.wbt... 426
Phone.lst .. 431
FileAttr.wbt .. 431
Binary.wbt .. 433

CHAPTER 11 SAMPLES .. 434
Hello Windows.wbt .. 434
Progress.wbt .. 437
Text Fonts.wbt .. 445
Colors.wbt .. 454
Buttons.wbt .. 459

ix

Introduction to Programming

x

Lines.wbt .. 461
Shapes.wbt ... 469
Phone.lst .. 476
PhoneListBox.wbt ... 476

CHAPTER 12 SAMPLES .. 483
Freehand.wbt ... 483

CHAPTER 13 SAMPLES .. 488
SelfTest.wbt .. 488

CHAPTER 14 SAMPLES .. 489
Exercise A.wbt .. 489
Exercise B.wbt .. 494
Exercise C.wbt .. 498
Exercise D.wbt .. 503
Exercise E.wbt .. 508
Exercise F.wbt .. 513

CHAPTER 15 SAMPLES .. 519
Debug01.wbt .. 519
Debug02.wbt .. 520
Parts List.lst .. 521
ExternCall.wbt .. 521
GetData.wbt ... 522
SortData.wbt .. 523
Debug03a.wbt .. 523
Debug03b.wbt .. 524
Debug03c.wbt .. 525
Debug03d.wbt .. 525

CHAPTER 16 SAMPLES .. 526
PlatformInfo.wbt .. 526
NetTest.wbt .. 527

Introduction : Becoming a Programmer

INTRODUCTION : BECOMING A PROGRAMMER
THERE WILL BE A TEST…

According to the popular myths, all programmers, commonly called “geeks” (even
though the term itself applies to a certain type of performer in an old-style sideshow at
the carnival) are strange individuals with eccentric habits. Programmers are solitary
individuals who communicate better with computers than with other people, who work
strange hours (usually in strange surroundings), and who are only happy when they are
cracking into Pentagon or Kremlin computers and starting World War III.

Obviously, this last assertion is patently untrue and is simply a rumor fostered
by the Gnomes of Zurich and the Trilateral Commission after certain rogue
programmers blocked their collective efforts to take over the world. (The rest of
the rumors, however, hold some elements of truth.)

This book is your invitation to join the ranks of those weird individuals who form the
cyber-intelligencia comprising the true rulers of the world. As such, you will be expected
to give up your three-piece suits, increase your intake of caffeinated beverages, and trade
your usual 9-to-5 working hours for … well, let’s just say that programmers consider 9-
to-5 to be slacker’s hours.

However, as a reward, you will be allowed to mutter strange curses concerning devices
and processes that the rest of the world has never heard of. You will be able to use such
esoteric terms as FOOBAR, bytes, registers (which do not involve paper), bitmasks,
parameters, and dwords; and to appear to be devoutly contemplating the soul of a silicon
chip while others about you are devoting their time and energies to the mundanities of
everyday business (including such tortures as conferences and committee meetings).

In this book, Introduction to Programming, we’re going to cover a lot of ground. I hope
that you’ll find the journey interesting and the destination rewarding. You are on your
way to joining the elite of the new order (and assuming your proper position on the
“bleeding edge” of technology). Your instructions are quite simple: Sit back, flex your
typing fingers, and … read on.

The programming language we will use, WinBatch or WIL (Windows Interface
Language), is a high-level language. This means that WinBatch allows you to perform
tasks using relatively simple instructions that accomplish a great deal. And, perhaps more
important, WinBatch allows you to write programs without needing to know all of the
finer details of the Windows operating system.

Since the assumption is that you, the reader, are not an experienced programmer (or, in
any case, not experienced with WinBatch), this book will start with the basics. We begin
by showing you how to use the tools in the form of the WinBatch IDE (Integrated
Development Environment) and then how to write simple programs.

xi

Introduction to Programming

xii

We will not, however, confine ourselves to only simple elements. In the course of this
book, you will learn about a wide variety of programming capabilities—or functions as
they are commonly called—as well as how to create data-storage elements, how to
manipulate data elements, how to present them, and a host of other matters.

Along the way, you’ll learn how to manipulate strings, create lists of data, read and write
files, play with numbers, create buttons and controls, draw images, paint fancy windows,
and even how to debug your programs. And, naturally enough, given the prevalence of
networks in today’s world, you’ll learn how to access networks.

In short, you will learn both the basics of programming and a fair measure of the tricks of
the trade—enough to put you well on the road to becoming a competent programmer.

Given this scope of material to be covered, it would be well to stop talking about it and to
simply get started. Still, before proceeding, one word of warning:

There will be a test…

And, that said, let’s get on with the real topic of programming applications.

Chapter 1 : The Golem Principle

CHAPTER 1 : THE GOLEM PRINCIPLE
BASICS OF PROGRAMMING

golem \gô-lam\ n. [Yiddish goylem]: an artificial human being of Hebrew
folklore endowed with life.

In Hebrew folklore, a golem was a manufactured creature in the form of a human,
constructed from clay and baked in an oven. The golem was sculpted with a cavity in its
head. The constructor of the golem would place a script in the cavity. According to
legend, this script was normally a holy scripture, and it was by the power of the words
that the golem was brought to a semblance of life.

Once activated, the golem was able to perform such tasks as the animation’s creator
directed. From a religious standpoint, since a golem was a soulless creature, the construct
was not subject to Levitical restrictions concerning the Sabbath and was not prohibited
from working during the Sabbath.

Likewise, not being flesh and blood, a golem was not subject to exhaustion; did not
become bored; did not require rest, sleep, or sustenance; and was not injured by fire or
other dangerous or debilitating conditions. In short, a golem was the equivalent of our
contemporary concept of a robot.

So, why are we talking about golems?

The main reason is that the stories of golems can tell us a great deal about their modern
counterparts, the computer.

computer \kam-\ n. : one that computes; specif: an automatic electronic
machine for performing calculations.

You’ll notice that this definition of a computer (taken from Webster’s Seventh New
Collegiate Dictionary) doesn’t have much in common with the definition of a golem.
However, when you go beyond the mere dictionary definitions, you find that there are
strong similarities.

Both are constructed of similar materials—clay begins as a mixture of hydrous aluminum
silicates; a computer chip is also silicon-based but uses aluminum circuitry. A golem is
baked (to produce anhydrous silicates), and a computer chip is also created using heat
(both to initially purify the silicon and then to add specific and highly controlled
impurities, which give it functional capabilities).

13

Introduction to Programming

And, of course, like the golem, the computer is also a soulless machine. It is not subject
to exhaustion, does not suffer from boredom, and is not governed by Levitical
restrictions.

But, for our purposes, the most important parallel is how they are both controlled by
“words.” The golem is given life by the words—the script or scripture placed in its head.
The computer chip also gains its life from the words—the instructions or machine code
that tell the computer how to perform tasks.

How Computer Applications Work

Without getting into the details of CPUs and chips, file systems and memory allocation,
or of bus speeds and duty cycles, what makes a computer application work is simply a
series of instructions—words. These are not, however, words in English (or Russian,
Yiddish, Thai, or Urdu). Instead, these instructions are in a binary language that the
computer (or, more precisely, the computer’s CPU) can understand directly.

The term word, as used in the computer and software industry, has a special
meaning. It refers to a piece of data that consists of 16 bits (or binary digits,
which are the smallest unit of computer information). For this reason, this
chapter refers to instructions rather than words.

Because what the computer can understand and what the programmer can readily
understand are two quite different languages, programs are commonly written in what are
called high-level languages, which are languages that humans can more easily
comprehend. Note, however, that these high-level languages are not precisely English. It
simply is not practical to tell the computer, “Add up this column of figures and give me
the total, the average value, and a breakdown of expenses by month.”

Lingua Cyber

In order to “talk” to the computer and to create sets of instructions to produce your
custom application, an initial requirement will be for you to learn to speak a lingua
franca—or, if you prefer, a lingua cyber. You need to know how to use a high-level
language that you, as the programmer, can understand and that can be translated into
instructions that the computer can recognize and execute.

Remember, there is nothing “sissy” or unmanly/unwomanly about resorting to these high-
level languages rather than struggling with the machine language instructions directly.
The real point of developing any application is to write it in a reasonable length of time,
to have it work when finished, and to have it accomplish the desired task.

For example, would you prefer to program using assembly language (a low-level
language) instructions such as:

DISPLAY EQU 2H ; output function
 DOSCALL EQU 21H ; DOS interrupt number

14

Chapter 1 : The Golem Principle

 COUNT EQU 12D ; string length

DATASEG SEGMENT ; define data segment
 STRING DB 'Hello World!'
DATASEG ENDS

CODESEG SEGMENT ; define code segment
MAIN PROC FAR
 ASSUME CS:CODESEG, DS:DATASEG
START: ; starting execution address
 PUSH DS ; save old data segment
 XOR AX.AX ; ax = 0
 PUSH AX ; save ax on stack
 MOV AX,DATASEG ; store data segment in DS register
 MOV DS,AX ;
 MOV CX,COUNT ; store string length in CS register
 MOV BX,OFFSET STRING ; address of string

REPEAT:
 MOV DL,[BX] ; put one character in DL register
 MOV AH,DISPLAY ; display character function
 INT DOSCALL ; call DOS
 INC BX ; advance the pointer
 LOOP REPEAT ; loop until done
 RET ; return to DOS
MAIN ENDP
CODESEG ENDS
MAIN END ; end of assembly

Or would you find it easier to write:

print “Hello, World!”

Granted, this is a rhetorical question. We assume that your preference is a high-level
language that allows simple instructions like those above to be used to accomplish
relatively complex tasks.

Both of these code fragments perform the same task: assigning values to two
variables, then adding the two variables with the sum stored in a third variable.
And, finally, the third variable is printed to the console (DOS) display.

For programming applications, there are a wide variety of high-level languages, and these
are commonly referred to as computer languages. BASIC, COBOL, FORTRAN, C/C++,
and Java are just some of the multitude of computer languages.

This book is about using a high-level language called WIL (Windows Interface
Language) or simply WinBatch. Although this language is less powerful than some other
languages, it is also much easier to learn and use than many other languages, such as
C/C++ or BASIC.

15

Introduction to Programming

High-Level versus Low-Level Programming Languages

In the next chapter, you will see how a single WinBatch instruction provides a
window, a frame, a title bar, and a message display on the screen. In addition,
behind the scenes, this same instruction provides a timer that will close the
window after a specified interval. Compare this with the assembly language
example shown in this chapter, and you can get an idea of the relative power
supplied by a high-level language.

Naturally, there is a trade-off. A low-level language like assembly allows the
programmer to design anything—absolutely anything. A high-level language
like WinBatch, while granting a great deal of power in simple instructions, also
constrains the developer to using the functions provided.

Of course, learning to use a low-level language is considerably harder than
learning to use a high-level language. Then, even after you’ve become familiar
with the language, the work required to create even a simple application using a
language like assembly is many, many times greater than creating a similar
application using a high-level language like WinBatch.

This is not to suggest that either high-level or low-level languages are
preferable; each has different uses. However, high-level languages offer two
important advantages: They are easier to learn, and they can be used for rapid
application development.

The Sorcerer’s Apprentice

Computers are fast and accurate, but they are also complete idiots. Computers do not
think! The only thing that a computer can do is to follow instructions. A computer can
accomplish its tasks very rapidly, efficiently, and patiently. But the computer does not
take any initiative; it does not possess even a modicum of common sense. A computer
will do something totally stupid if this is what it has been instructed to do!

If you saw Walt Disney’s film Fantasia (and probably also if you watched the Disney
show on TV), you’ve seen the story “The Sorcerer’s Apprentice.” In this story, Mickey
plays the part of an apprentice whose job is to sweep out the sorcerer’s laboratory and to
fill the cistern with water. While the sorcerer is away, Mickey decides to try out one of
his magic spells to animate the broom and have it carry buckets of water. Then, Mickey
falls asleep. The animated broom continues to carry water, repeating the task long after
the cistern is filled to overflowing. Mickey finally awakens when the entire laboratory is
underwater.

Mickey, frantically trying to stop his creation, uses an ax to split the broom into a
hundred pieces, each of which proceeds to carry more buckets of water into the structure.
(This part of the story goes a bit beyond our immediate caution—an ax generally will
stop your computer from executing its tasks.)

16

Chapter 1 : The Golem Principle

The point is that a computer application—any computer application—is very much like
the broom animated by Mickey. Once an application is told to do a task, it will continue
to do so until it is instructed otherwise. In computer applications, everything must be
explicitly identified, and nothing can be assumed.

For a simple example, suppose that we’ve included instructions in a program to break a
sentence, called a string in computer terminology, into individual words (in the human
sense). We’re going to send each of these words to another process called dictionary.

A subroutine is a block of code containing a set of instructions which may be
called from any point in a program to perform a specific task. (Subroutines are
discussed in Chapter 7.)

To do this, we would create a loop, which is computer terminology for a group of
instructions (called a block of code) that are repeated ad infinitum until a test condition is
satisfied. (Loops and other control conditions are discussed in Chapter 8.)

The term string is commonly used to refer to a string of characters, called chars,
but remember that the spaces between words are also characters.

Here are the instructions for the proposed process expressed as “dummy” code in plain
language, with comments in italics (later, you’ll learn how to construct the same type of
process in WinBatch):
Let location equal 1.
Repeat

Is character at location in test_string equal to space?
If NO
Then

Increase location by one. (to test the next character)
Else
Begin

Copy location minus one number of characters (don’t include
spaces) from first of test_string into new_string.
Send new_string to dictionary.
Trim location number of characters from first of test_string.

End.
Until test_string is empty.

In this example, the indentations are simply to group lines (blocks) visually to
show which commands execute together. This type of formatting is not required
by the computer but should be used simply because it makes it much easier for
you to read your own code at a later time—like an hour or more after you’ve
written it, not to mention next month when you find that you need to make a
change (and this will happen!). Also note that the practice of writing dummy
code in plain language like this is often useful when designing an application.

17

Introduction to Programming

Now, these instructions should parse (separate) our sentence (string of characters) into
individual words, sending each one to the dictionary subroutine and finishing when no
more words remain, correct?

Does this question sound like it is loaded? Is it a trap?

Well, yes it is. The process, as written, will never finish. This is routine will become what
is called an infinite loop, because, once initiated, it will attempt to continue until the
power is shut off or the computer is reset. Obviously, this is not a desirable condition in
an application.

In this example, the error is a simple one. We’ve created a loop that is set to terminate
when a specific condition is satisfied. Within this loop, we have also created a test that
looks for a space character to identify individual words. The failure will occur when the
last word in the sentence is reached unless, against all reasonable expectations, the
sentence ends with a space character.

In other words, as the routine is presently constructed, the final word in test_string
will never be parsed unless there is a space following it to allow it to be identified as a
word. And, unless this identification is made, test_string will never be empty, the test
used to terminate the loop will never be satisfied, and the loop will never finish.

WinBatch provides a function called ParseData that breaks a line into its
individual items, similar to the example discussed here (without becoming
embroiled in an infinite loop, of course). An example of the ParseData function
is included in the WordCnt.wbt demo program.

The moral of this example is a computer is only as intelligent as the application. And, of
course, the application is only as intelligent as the instructions provided by the
programmer.

Does it seem as if the point is being belabored excessively; as if a sledgehammer were
being used to drive a thumbtack or an elephant gun used to shoot a mosquito? Please
believe that, if anything, we have been constrained in pressing this point home. Murphy’s
Law is never more evident than in programming and never more annoying when it
occurs.

0 Murphy’s Law (short version): Mistakes will happen! Repeatedly! When a
program doesn’t run as planned (and, at some point or another, this will happen
to you, just as surely as the sun rises), we use a process called debugging to
locate the point where an error occurs and to discover why. In other words, we
debug programs to find our mistakes. This topic will be covered in Chapter 15.

For the moment, you may consider the lecture terminated. We will now move on to the
subject of application design.

18

Chapter 1 : The Golem Principle

Principles of Designing Applications

The one sure secret of success for a programmer—whether you are a professional
software engineer or simply writing a few utility applications for your own use—is
attention to detail. While it is not the only requirement (otherwise, we could all be
replaced by cats), this one factor greatly affects whether you are successful or only
frustrated in your programming endeavors. Furthermore, attention to detail is never more
important than at the start of your project, in the planning and designing stage.

Therefore, before you learn how to create an application using a programming language,
you need to know how to design the application. Application design is important no
matter how simple your application is.

There are seven major steps involved in the design process, as illustrated below and
discussed in the following sections. (Note that in practice, the development steps are not
always distinct; they frequently overlap.)

The application development process

Step One: Defining Objectives
The first step, and the first principle, in designing any application is to decide what you
want the application to do. This can be done formally, such as by writing a mission
objective, or informally, as a series of notes or a paragraph or two of text. The exact form
is unimportant; the content is important.

19

Introduction to Programming

Begin with a one-sentence description that is a broad overview of what the application is
intended to accomplish. For example, suppose that we start with this stated objective for a
simple application:

• Track the movements of the mouse.

Once you have an overview, this broad statement should be expanded to encompass and
further define the purposes to be served by your design. Our sample overview objective
could be expanded to include these further objectives:

• Provide an explanation to the user.
• Display the mouse position in screen coordinates.
• Update the displayed coordinates at regular intervals.
• Provide an exit option.

This represents a reasonable set of objectives. Later, perhaps we’ll wish to revise this list.
Typically, as we progress with developing an application, we find new features or
elements that we want to add. It’s also possible that some of the features initially planned
later turn out to be unnecessary or even undesirable. That’s fine as well. Objective
definitions (and good programmers) are flexible; stating an objective doesn’t mean that it
is carved in stone.

Step Two: Defining Communications
Our objectives definition implies a couple of elements of communication:

• Find out the position of the mouse from the system.
• Report the position to the user.

Notice that there are two quite different types of communication included in this
specification: one to retrieve information from the system, and a second to write
information to the display.

Depending on the application’s purpose, there may be quite a variety of communication
elements within the program’s scope. These can include:

• Retrieving data from a file
• Retrieving information from the system or from other ongoing processes
• Retrieving input and responses from the user
• Writing data to a file
• Passing information to the system or to other processes
• Writing information to the display (which can include providing audible cues or

other types of feedback)

Each of these communication elements can be further subdivided into individual
transactions or, perhaps more relevant in many cases, they can be further defined as the
type of data being read or written.

Suppose that we expect to read and write a data record from a file. If so, the definition
will need to include the structure of the data (how the data is formatted) and what type of
record file is used for storage. Defining the structure of the data, whether it is very simple

20

Chapter 1 : The Golem Principle

or extremely complex, is every bit as important as recognizing that the data exchange will
occur.

For example, let’s assume that the application needs to read a record containing name and
address information. Exactly what does this record consist of? Will it be just a name and
a street address? That format is unlikely. More typically, the record will need to contain
either one or two lines for the street address, plus the city, the state, and zip code. And if
we expect to contact anyone beyond our national borders, the record will need to hold
international address information as well.

And what about telephone numbers, area codes, and international country codes? Are
there any extensions associated with entries? For that matter, do we need any type of
PBX codes with certain types of calls or billing log codes?

Once we’ve exhausted the address and telephone number variations, are there any other
fields that we should consider? How about notes, contact lists, e-mail addresses, records
of previous calls, and so on. The list of considerations could be extended indefinitely, or
it could be shortened if these elements are not relevant to the task—it all depends on the
purposes of the application.

The point is that data elements and data structures require careful planning and design.
Planning these elements at the beginning of your project can save you a lot of work later.
Or, more accurately, it can save you a lot of rework.

Step Three: Defining Tasks
The next step in the process is to define the tasks that the application needs to
accomplish. In our simple mouse-tracking example, we’ve already stated a couple of the
tasks when we defined objectives:

• Display the mouse position in screen coordinates. This objective implies an
element of communication but also implies a task: writing this information to the
screen.

• Update the displayed coordinates at regular intervals. This objective also implies a
task: creating a mechanism that will sample the mouse coordinates by requesting
this information from the system, at specific intervals, and then pass this
information to the display task.

• Provide an exit option.

You may think that this third task implied in the objectives is rather obvious. However,
it’s the obvious that is overlooked nine times out of ten!

This particular “obvious” task is one for which you normally do not need to make special
provisions. Most applications have inherent exit provisions and, even if you don’t plan
for them, the application shell commonly supplied by the development tools will include
an exit provision.

However, one element that is overlooked frequently is the need to provide a response to
an exit command. This response can take a variety of forms and might include saving
critical information before an exit, performing cleanup operations, or simply requesting
confirmation before allowing the exit.

21

Introduction to Programming

Now we need to consider if there any other tasks that this simple application needs to
handle. Actually, there are two more tasks, which are not likely to occur to the novice
programmer.

One is to “capture” the mouse input. Understanding this task requires some knowledge of
event messages. Very briefly, event messages are the means used under Windows for the
operating system to pass data and notifications to applications. The operating system
tracks the mouse position and then makes this information available, as event messages,
to whichever application the mouse cursor is positioned over.

There are a great many other types of event messages that are being passed to all
open applications at all times. However, applications are not required to respond
to all event messages and, normally, a program will be written to respond to
only certain messages and ignore all those that do not apply. Much of this
message handling will be transparent to you, as the programmer, and will not
require your specific attention. You’ll learn more about message handling and
when you do need to be familiar with event messages in Chapter 11.

Normally, an application only “owns” the mouse—and, therefore, is ready to receive
event messages from the mouse to report mouse positions—while the mouse (the mouse
cursor) is positioned over the application’s window. Capturing the mouse input is a
method that allows an application to monitor the mouse-event (movement and button)
messages at all times. (Note that although mouse capture does not prevent other open
applications from being operated by the mouse, applications should not intercept mouse-
event messages unnecessarily.)

The final task warranting mention here is predicated on the mouse-capture task. It is to
ensure that the mouse capture is released before the application exits, which ties back into
the need to provide exit responses.

Now, in this or any other application, there may or may not be other tasks requiring
handling, and it may or may not be practical or possible to think of all of these in
advance. However, you should do your best to define all the tasks for your application
before moving on to the next step.

Step Four: Writing the Code
Perhaps this is point where you expected to start. But, by now, you should understand
why this is the fourth step and not the first. Planning prevents problems.

Since writing the code is the main topic of this book, it will be covered in more than a
little detail in subsequent chapters. It is mentioned here simply as a step in the overall
process of application design.

Step Five: Testing, Testing, and Retesting
Once you have written your application, and during the process as well, you need to test,
test again, and retest. Simply testing the application once is not enough.

22

Chapter 1 : The Golem Principle

You need to test several times because not all errors are obvious and some are downright
obscure. Also, the more complex an application becomes, the harder it becomes to ensure
that all possible conditions have been tested. And, quite frequently, an application may
pass a test until just the right (or wrong) conditions are applied.

Testing applications incrementally during development and when they are finished will
be discussed in following chapters in parallel with application development and then in
greater detail in Chapter 15.

Step Six: Getting Outside Opinions
Even after you’ve tested an application to frustration and you’re absolutely sure that there
are no possible errors remaining, your application is still not ready to go. At this point,
you need an outside opinion, or better, multiple outside opinions.

For this purpose, you need to hand the application to someone who does not know how it
works, has no expectations for its performance, and, ideally, has not been involved in the
application’s development. Then let that person try to break it!

Chances are that such outside testing will reveal flaws that you, who are very familiar
with the application and have expectations of what it will do, would not likely discover.
An outside tester is more likely to discover performance or interaction flaws, to find
awkward elements in usage or input, or to come up with ideas for valuable enhancements.
This is not to denigrate your own talents, but you should recognize the simple fact that it
is difficult to survey the forest while you are standing in the midst of the trees.

Here’s an important point: Whatever your outside testers tell you, listen! Never argue,
explain, or justify … just listen carefully. Otherwise, you’ll miss one of the most valuable
resources you have access to.

Step Seven: Documenting
Strictly speaking, documenting your application is not a separate step but should be
numbered Step 1B, Step 2B, Step 3B, and so on.

This is not to imply that you necessarily need to publish a manual with four-color process
photos and screen shots or that you need to produce elaborate online documentation.
Your application may or may not require extensive documentation.

This is to suggest (or even direct) that you keep notes during the development process to
remind you of why a particular subroutine was created, what the purpose of a feature
was, what the input expectations are for a process—in short, what is going on within the
application. These notes can be separate from the application as a text file or as separate
memos, or they can be brief notations embedded in the source code as you write it.
Ideally, you documentation should be both separate notes and embedded notations.

In this form, the documentation is intended less for the end user (although it can be used
while preparing more formal documentation) than it is intended as a memory aid for you
or for other programmers at a later time when the application requires revision,
correction, or maintenance.

23

Introduction to Programming

24

Incidentally, the phrase “at a later time” does not necessarily mean next month or next
year; it can also mean two hours from now, tomorrow, or next week! It doesn’t take long
to forget precisely why you elected to do something in a particular fashion. A few
minutes spent making notes while you are designing a portion of the application can save
many hours a day later.

Summary

We began this chapter by talking about the nature of computers, computer languages, and
computer applications. We offer the cautionary reminder that computers are both stupid
and single-minded. Our point is that the computer will always try to do exactly what it is
told to do, irrespective of whether this is what you want it to do.

Then, having tempered your expectations somewhat (but, we trust, without having
discouraged you), we turned to the process of creating a computer application. We
outlined seven basic steps for application design, stressing the importance of planning,
testing, and documenting the application.

Perhaps these preliminary discussions have struck you as unnecessary, and you're
anxious to get on to the point of actually creating something. If so, the next chapter
should satisfy your desire to quicken the pace, as we move to hands-on programming.
In Chapter 2, you’ll create an application while you become familiar with the tool set (the
programming language) and the workspace (the IDE, or Integrated Development
Environment).

As you continue into the details of programming, keep in mind what you’ve read in this
chapter. Although the steps in the development process may seem dry and theoretical,
applying them to your own projects will save you a great deal of trouble.

Chapter 2 : The Programmer's Workroom

CHAPTER 2 : THE PROGRAMMER'S WORKROOM
THE INTEGRATED DEVELOPMENT ENVIRONMENT

Back of the beating hammer,
By which the steel is wrought,
Back of the workshop’s clamor

The seeker may find the Thought.
Braley – The Thinker, Stanza 1

programmer – a person who designs, writes, tests and documents a computer program.
– The PC User’s Pocket Dictionary

integrated development environment – abbreviated IDE. A complete set of program-
development tools, all run from a common user interface. – The PC User’s Pocket
Dictionary

All the sample programs presented in this and the following chapters are
available in Appendix A.

Before we begin writing WinBatch programs, there is one rather obvious prerequisite:
you must have WinBatch installed on your computer. If you have not yet installed
WinBatch, you can follow the installation instructions in your WinBatch help file, under
“WinBatch Setup,” to set it up on your computer. Then you will be able to follow the
exercises and create the sample programs presented in this book.

First, we will look at the differences between compiled and interpreted programs, then we
will introduce your programming workspace—the integrated development environment
(IDE). During the course of this chapter, you will create a simple WinBatch program and
learn how to generate dialog boxes.

How To Use This Book

Throughout this book, you will find references to example programs. All of the examples
presented in this and following chapters will be listed in Appendix A Ideally, you should
open these programs and watch how they function while reading the explanations for
each.

Try using the Debugger mode (explained later in this chapter) to execute your own
applications step by step. You are also encouraged to experiment with the example
programs, to make changes to these and to observe how changes affect operations.

25

Introduction to Programming

Within the text of this book, the names of functions and variables commonly appear in
the Courier font to make them easier to distinguish.

Another item for you to note is that, in the WinBatch editor, color coding is applied to the
program. The color coding causes the names of functions to appear in blue and
comments in green while reserved words such as for, endif, case or gosub
appear in purple; quoted strings are shown in red.

Once your source file is saved as a .WBT file, this color coding appears automatically as
you add or make revisions and should, we hope, help to prevent errors. Or, at the very
least, make some errors more readily visible.

You will see similar color code syntax used throughout this book.

Compiled versus Interpreted Programs

WinBatch is marketed in two versions: an interpreter version and a compiler version.

An interpreter is simply a program which reads a source file – a.k.a. a script – and
interprets each instruction in the source file to create a set of machine language
instructions which can be executed by the computer. The source file – or script – is
written in a form which can be read – and written – by humans but which is not
intelligible to the computer. Therefore, in order to execute the program, the interpreter
reads one set of instructions – normally a single line of code – and converts these into a
machine-compatible format. The resulting machine code is then executed by the
computer before proceeding to the next line of the source file.

While an interpreted program can be executed, it cannot be distributed – given to another
user or run on another computer – without also distributing and installing the program
interpreter on every machine where the program should execute.

In contrast, a compiler converts the entire source file into a machine language program
which can, subsequently, be executed without requiring a copy of the compiler or
interpreter. This means that the executable version of the program can be distributed and
executed on any (compatible) system without the need for a copy of the WinBatch
software itself. For example, a compiled WinBatch script can be distributed across a
network without the individual workstations requiring a copy of WinBatch or access to
WinBatch for the applications to function. You can distribute a compiled WinBatch
program to anyone, and there are no licensing fees required for such distribution.

Also, as a secondary advantage, when you distribute a compiled .EXE (executable) file
rather than a interpreted WinBatch script, the distributed product can be used but not
modified by those third parties. (Of course, you can still modify the program, using the
original source script.) In this fashion, your original concept for the program, as
exemplified by the source code, remains proprietary and protected.

If you create an interpreted WinBatch script (with the interpreter version of WinBatch),
the WinBatch software must be installed on the systems that will run that script. In other
words, running your interpreted program requires WinBatch. Of course, the interpreter

26

Chapter 2 : The Programmer's Workroom

version of WinBatch does cost less and, if your WinBatch programs are only for your
own use on your own computer, there may be no great need for the compiler version.

For the purposes of this book, it does not matter whether you are using the interpreter
version or compiler version of WinBatch. The principles of application development and
the demo applications presented here apply to either version.

A Brief History of the IDE

Back in the olden days of yore, before graphic environments such as Windows became
the preferred standard, application development was a quite different process. Source
files for applications—the pseudo-English text files containing the instruction codes—
were written using whatever editor was most convenient or the one that the programmer
preferred.

Once the source file was written, or when the programmer had reached a point where he
or she felt it was ready for testing, the instruction file would be saved as a disk file, and
the compiler would be invoked to turn the instructions into machine language.

The source code file for a program or application may also be referred to as the
instruction file, program file, source file or, in the case of a WinBatch
application, as a program script or simply a script file. The terms used are
interchangeable and all refer to a document file that can be read or modified
using any editor or word processor program. Some languages, such as Visual
Basic, use some proprietary file format (.frx form files in Visual Basic), but
most languages rely on plain-text source files, even though they may use special
file extensions to indicate the purpose of the file.

In most cases, at this point, the compiler would report a series of errors in the code,
listing these by line number and offering a very brief error explanation. When this
happened, the programmer would then reopen the source file, locate the offending lines,
and attempt to correct the mistakes before repeating the compilation.

Those who remember the old ways first hand may object to our over
simplification of a rather more laborious process; however, keep in mind that
this coverage is intended as an introduction and comparison rather than as an in-
depth history lesson.

When the compiler finally did not find any more errors—usually after several compile-
and-correct cycles—the compiler would work its magic and build the executable
(runnable) program. The resulting product could be tested. This testing inevitably
uncovered other errors that occurred during program execution. Then the programmer
would reopen the editor, load the text file containing the program instructions, and begin
the process again.

The introduction of the IDE (integrated development environment) greatly improved the
lot of the application developer. The first popular IDE came on the market in the mid-

27

Introduction to Programming

1980s, when Phillipe Kahn, founder of Borland International, put two new products in a
single package: the Turbo Pascal compiler and the Turbo Pascal Integrated Development
Environment.

Actually, the term IDE came later, but the concept itself was an instant hit. The combined
editor/compiler/linker allowed programmers to write their code, compile and link, test the
results interactively, locate errors instantly, correct and recompile, and continue without
tedious interruptions.

Turbo Pascal was itself faster than any other compiler and better documented,
and it also produced smaller executable code. Even better, Borland did not
demand royalties from developers. At one time, Turbo Pascal and the
subsequent Turbo C compiler threatened to put Microsoft out of the
programming language business entirely. Microsoft’s share of the development
language market did not really recover until more than a decade later, when
Microsoft finally introduced its own version of the IDE, under the name Visual
C++.

Since then, the IDE has become the standard that few programmers are willing to forego.
The fact is that an IDE makes application development much faster, easier, and cleaner
(some consider not using one tantamount to proof of severe brain damage).

An Introduction to the WinBatch IDE
After you’ve installed WinBatch, you should find 'WinBatch Studio exe' on your program
menu (the Start menu) where it can be launched like any other application.

In either case, when you launch WinBatch Studio, you should see something similar to
the following window where the WinBatch IDE (WinBatch Studio) appears with labels
added to identify its main elements:

• The Menu Bar
• The Tool Bar
• The Edit Window containing the program source code
• (Not shown) The build window, which will display error messages in the code

and, on a second tab, the search result window
• The Watch Window, where program variables and their values will appear
• The Status Line shows a variety of information including the position of the

cursor (line 5, col 1), the execution status (Script completed) and various details
of the keyboard status (none appear in the illustration) as well as the current time.

In the illustration, the program edit window shows the complete source code for a simple
program. Before going into the details of the WinBatch IDE – a.k.a., the WinBatch
Studio – we’ll construct and execute this program as an introduction to WinBatch
programming.

28

Chapter 2 : The Programmer's Workroom

The WinBatch Studio with the Hello, World example

A First Program: Hello, World

Hello, World is a traditional first program for teaching a computer language. This
program is intended to do very little except for displaying a message. In this case, as you
will see, we’ve added a small twist...

To get started, open WinBatch Studio and then select New from the File menu to create a
blank document.

Since WinBatch Studio makes no assumptions about the type of document you are
creating – or, more accurately, defaults to the assumption that this is a blank text
document – you’ll need to save the document with a “.wbt” extension before WinBatch
will recognize this as a program script.

Next, enter the following source code:

; Hello, World.wbt

Display(5, "Hello, World", "How are you?")

Pause("Okay", "Now, wasn't that easy?")

exit

29

Introduction to Programming

The first line is a comment, which begins with a semicolon (;) to tell the interpreter to
ignore everything following the semicolon on the current line. The comment in this
example simply identifies the name of the source file.

The second line contains a Display instruction, which produces the image shown below:

The Display function is called with three arguments or parameters. The terms argument
and parameter are effectively interchangeable and simply refer to a unit of information
that can take several forms. The possible forms, or types, of data will be introduced
in Chapter 4.

In this example, the first argument is a number that tells the Display function how many
seconds to display the message window. Since the Display window does not have any
controls, without specifying a time, the window would remain on the screen
indefinitely—not a desired result in this case.

The second and third parameters are each strings. A string is simply a sequence of
characters, such as a word or a sentence, enclosed in quotation marks (quotes) to indicate
where the string begins and ends.

When a string needs to include quotation marks as part of the text, the usual
quotation characters (") enclosing the string can be replaced with alternate quote
marks, such as single quotes (‘) or back quotes (`). For example, `"I quote, of
course"` would be displayed as "I quote, of course".

In the example, the second Display parameter (the first string) appears as the window
title or caption. The third parameter (the second string) is the text to be displayed inside
the window.

After the requested 5-second delay, the window closes, the Display function returns, and
the next instruction, Pause, is executed, producing this result:

The Pause instruction is called with two string parameters. As with the Display
instructions string parameters, the first parameter is the string that appears as the caption,
and the second is the one displayed within the window. Unlike the Display instruction,
the Pause instruction does not require an argument to set the time interval. Its display

30

Chapter 2 : The Programmer's Workroom

automatically contains two button controls: OK and Cancel. Selecting either of these or
the close button (the x) on the title bar will close the window.

Finally, once the Pause instruction returns, the last instruction in Hello, World is
executed. This is the exit statement. Strictly speaking, this final instruction is not needed
here. The program will terminate just fine without being explicitly told to do so.

Since you’ve already saved this script as a file with the .WBT extension – without doing
so, you would have been unable to test the program since WinBatch would not have
recognized this as a WIL script – WinBatch Studio will automatically save any changes
made before executing the program.

You can now run your copy of Hello, World. Simply click on the Go button on the
toolbar (the seventh one from the right end of the toolbar).

The application should run, displaying the first message for 5 seconds, then the next
message will appear until you click on one of the buttons to clear it.

If you happened to make a mistake while entering the code, after you click on the Go
button, WinBatch will let you know, politely enough but firmly.

For example, suppose that the second instruction in Hello World.wbt has typographical
error and “Display” is misspelled as “Disply”. Then, when you try to execute the
program, a dialog will appear as:

31

Introduction to Programming

Note: after making a change to the script, make sure to save the file before
execution.

The dialog caption provides the error number and a brief explanation of the error while
the first line in the dialog shows the program line where the error has occurred. If you
simply click the OK button, you’ll be back in the WinBatch Studio editor with the cursor
positioned on the line where the mistake was recognized, ready to correct the script.

While the error message has shown you where the error occurs in the script, the More
Error Info button (bottom right) will provide you with additional information as shown
following.

Alternately, if you are on-line, you can click on the “Tech Support Web Page” button to
connect to Wilson WindowWare’s support site where you can locate further information
relating to the error.

Our recommendation, however, would be to begin by simply looking at the source code
and trying to figure out what it is that WinBatch doesn’t recognize. Most errors tend to be
quite simple ones and don’t require any kind of extensive search to locate or understand.

And this concludes your introduction to the construction of a simple program. Now let’s
take a tour of some of the features and tools in the WinBatch IDE.

WinBatch Studio Features and Tools

The WinBatch Studio menus and toolbar provide a wide variety of tools for creating,
manipulating, and testing applications. The WinBatch toolbar is shown below:

Many of the WinBatch toolbar buttons and menu options should be familiar to Windows
users, since they are standard functions supplied by most Windows applications.

32

Chapter 2 : The Programmer's Workroom

Most of the functions on the toolbar are also available on the menus. However,
space limitations dictate that the toolbar contains only a subset of the 72 menu
items. We won’t discuss each of these menu options individually; most of them
are self-explanatory. These menu items have also been documented in the
WinBatch Studio .chm help file.

File Operations
The New, Open, and Save buttons on the toolbar are used to create source (or document)
files, open files for editing, and save files to the disk.

The first button on the left, the New tool, creates a new, blank and unnamed file. Until
the file receives a name—by saving the file to disk—the file is given a temporary name,
such as “Text1”.

The second button, the Open tool, displays a file selection dialog box for locating and
opening files.

The third button, the Save tool, saves the file to disk. For a new, unnamed file, the Save
tool calls the File Save dialog box, where you supply a name and file extension, as well
as select a location to save the file. For a file that has previously been saved, the Save tool
automatically saves the named file, without displaying a dialog box.

These operations and other associated file functions are also available as options on the
File pull-down menu. In addition, the File menu will contain a list of recently used files.

The WinBatch editor can open multiple files at any time. The Windows pull-down menu
will display a list of the currently open files, with a checkmark by the file currently
selected (the active file):

If more than ten files were open in this illustration, the last option listed would be More
Windows which would bring up a dialog box with a complete list of all the open files.

33

Introduction to Programming

The Windows menu also offers options to create a new window and to split a window, as
well as a series of options to arrange windows and window icons (icons representing
shrunk windows).

Cut, Copy, and Paste Operations
The Cut, Copy, and Paste buttons on the toolbar perform the standard Windows cut,
copy, and paste operations.

Following standard Windows usage, the Cut and Copy buttons will be grayed-out
(unavailable) until a selection has been highlighted, and the Paste button will be grayed-
out unless there is material on the Clipboard available for insertion. Each of these tools,
plus other editing functions, are also available on the Edit pull-down menu.

Undo and Redo Operations
The Undo and Redo buttons on the toolbar allow you to recall (undo) recent editing
actions or to repeat (redo) them.

When there is no action that can be undone or redone, these buttons will be grayed-out.

The Undo and Redo functions are also found on the Edit pull-down menu.

Find, Find Next, and Replace Operations
The Find, Find Previous, Find Next, and Replace buttons on the toolbar perform
search and replace functions.

Like the other tools discussed so far, these functions are standard for Windows
applications and should be familiar to most Windows users.

The Find button displays a dialog box that allows you to enter a string (a text entry) and
then locate a matching entry in the current file, scrolling the edit window to that point.
The Find operation includes the option of finding and marking all matches within the
file.

The Find Previous and Find Next buttons simply repeat the previous Find operation
searching either backward or forward. You can use these to either step through matching
entries or, if you have multiple source files open, to repeat the Find operation on
subsequent files.

34

Chapter 2 : The Programmer's Workroom

The Replace button executes a Find operation but adds the ability to replace the target
string with new text. A Replace operation can replace a single entry, replace all matching
entries, or find a matching entry and query before replacement.

The Find, Find Prev, Find Next, and Replace functions are also available on the
Search pull-down menu.

Bookmark Operations
In a long source file, setting bookmarks at critical points allows you to return to those
locations quickly and to rapidly scroll between locations. The toolbar includes four
Bookmark buttons.

In order from left to right, the first of these four buttons is the Toggle Bookmark tool.
Clicking this button either sets a bookmark at the cursor position within the source file or
clears a bookmark at the cursor position.

The next button is the Next Bookmark tool. It allows you to step from one bookmark to
the next in the order they appear in the source file. The button to its right is the Previous
Bookmark tool, which steps through the bookmarks in the reverse order.

Last in this group, the Clear All Bookmarks button simply clears all bookmarks from
the source file.

The bookmark operations appear only on the toolbar; they are not included as menu
options.

Note: Bookmarks are not saved with the file. Once the file has been closed, the
bookmarks are cleared.

Tools
The Dialog Editor, Compile, WIL Type Viewer and Run buttons on the toolbar are
unique to IDEs.

The Dialog Editor button (the first of the four from left to right) starts the WIL Dialog
Editor, which will be discussed later in this chapter.

The second button, for the Compiler tool, may or may not be available on your system.
If this button is grayed-out, you have the interpreter version of WinBatch. As explained at
the beginning of this chapter, this does not prevent you from creating applications using
WinBatch; you just cannot produce compiled versions of these applications that run as
stand-alone executables.

35

Introduction to Programming

The third button simply launches the WIL Type Viewer. See WILTypeViewer.chm for
details.

The final button in this group, Run, is available in both versions of WinBatch. It simply
executes the script (program) in the current source file.

These functions are all available as menu selections as well as toolbar buttons.

Whether you have WinBatch installed with or without the compiler option really
doesn’t matter during development. Until you’re absolutely certain that your
application is finished, you’re going to use the Go button from the toolbar or the
Debug option from the Debug menu to execute the application. The Run button
on the toolbar (and the Run application name option on the Debug menu)
executes your application in a non-debug mode. This option is not recommended
until you are relatively sure that your script will function reasonably well.

Debugging Tools
The final group on the toolbar contains buttons for the application debugging tools.
During application development, the tools in this group will be your most useful and
most important assets for testing and debugging your application code.

The Go button (the first from the left) is similar to the Run button described in the
previous section, in that they both initiate execution of the program being developed. The
difference is that the Go button starts execution in a debug mode, allowing you to use
breakpoints to halt execution, to perform step execution, and to watch variables and
values during execution. In brief, the Go function permits you to examine the innards of
the application during operation.

The second button, Stop Debugging, is used to halt (abort) execution. This is useful after
you find a point where an error occurs or a point where you would like to revise the code.

The third button, Step Into, executes the application step by step, with a marker
showing each line of code as it executes. At the same time, the watch window lists the
variables in use and their values, allowing you to see precisely what is happening at each
point in the program. When a subroutine is reached, the Step Into function traces
execution into the subroutine, returning to the calling procedure when the subroutine is
completed.

Program variables are used to store information or values for use by the
application. Variables are discussed in Chapter 4. Subroutines are sets of
instructions that are called by name from a main program. Subroutines are the
topic of Chapter 7.

36

Chapter 2 : The Programmer's Workroom

The fourth button, Step Over, is the same as Step Into, except that execution does not
trace into any called subroutines.

The next button, Insert/Remove Breakpoint, sets or clears a breakpoint in the
application code at the cursor position. During debug operations, execution will be
suspended when a breakpoint-flagged operation is reached. The button to the right of
Insert/Remove Breakpoint is the Clear All Breakpoints tool, which simply clears all
breakpoint settings.

The final debug operation button, Toggle Watch Window, shows or hides the watch
window. This window is used to display information about variables and values during
application execution.

All of the debugging tools are also available on the following Debug pull-down menu:

In general, using the debugging tools is a multiple-step process. If you do not set any
breakpoints in the application, when you use the Go function, the script will simply begin
execution and run normally. This is subject, of course, to unexpected errors in the
program. At this point, any experienced programmers who are reading this book probably
have a wry smile on their faces, in response to the words “unexpected errors” in the
previous sentence. For one, the phrase is a virtual oxymoron—if an error was expected,
we would have done something about it already, right? So, most often, when developing
an application, you’ll simply run it and watch to see what goes haywire and try to guess
why. Then, after getting a rough idea of where things are going wrong, you’ll usually set
a breakpoint in the code somewhere before things crash. And, after setting the breakpoint,
you’ll execute the application again, letting it run to the breakpoint and then stepping
through looking for our error or errors, as the case may be.

We will discuss debug operations in detail in Chapter 15, after you have learned more
about creating applications.

37

Introduction to Programming

38

Summary

This chapter has offered an introduction to a number of important topics, beginning with
the WinBatch IDE, which provides your workspace and tool room for application
development. The WinBatch Studio introduction including creating a simple Hello World
program and a tour of the IDE features and tools.

Now that you have been introduced to the WinBatch IDE—your basic workbench—it’s
time to move on to creating an application that goes somewhere beyond the simple Hello
World example. To do this, in Chapter 3, we’ll continue the discussion by looking at
dialog boxes and the Dialog Editor.

Chapter 3 : Dialogs and the Dialog Editor

CHAPTER 3 : DIALOGS AND THE DIALOG EDITOR
HOLDING A FORMAL CONVERSATION

dialog – a window in a GUI-based application used to present a message, to offer
controls for selection, to provide a means for data entry or to request a simple
response.

dialog box – a dialog box opens when more information is needed from the user
before the program can continue. A dialog box may contain several different
elements, including text boxes, list boxes, command buttons and drop-down list
boxes, depending on the purpose of the dialog box, but it does not have to
contain all these elements at the same time. – The PC User’s Pocket Dictionary

In plain English usage, a dialogue (note the difference in spelling) refers to a structured
conversation between two individuals. In a computer application, a dialog is also a
structured exchange where the computer program is presenting information to the user
and requesting a response of one sort or another. Dialogs can be very simple, limited to
displaying a message and waiting for a simple response such as pressing an [Ok] button,
waiting for a choice between [Ok] and [Cancel] buttons or, in other cases, may offer a
complex set of choices or options for direct data entry.

While dialog boxes are often seen as auxiliary input devices to supplement
programs, dialogs can actually be the primary program interface and the
presentation window for the application.

An Introduction to the Dialog Editor

Dialog boxes, or dialogs for short, are integral to graphical user interfaces (GUIs),
including the Windows, OS/2, and Macintosh operating systems. For this reason,
virtually all computer languages offer some means of creating and formatting dialog
boxes; WinBatch is no exception.

Dialog boxes provide a pop-up information display, as well as a method of
requesting user input, feedback, or information.

In WinBatch, several predefined dialog boxes offer simple input tools. For example,
the AskYesNo dialog poses a simple question and offers three buttons for response, as
shown in the following dialog.

39

Introduction to Programming

AskYesNo.wbt

Another example of a predefined dialog box is the AskLine dialog, which presents a text
box for a string (character) response as shown here.

AskLine.wbt

Predefined Dialogs

Since both the AskYesNo and AskLine dialogs are predefined, all that is required to
display either is to ask, as:
Answer = AskYesNo("This is the title", "To be or not to be, that is
the question …")

– or –
sName = AskLine("Question", "What is your name?", "Simon Le'Gree")

Other predefined dialogs are provided by WinBatch through the AskColor, AskDirectory,
AskFileName, AskFileText, AskFont, AskItemList, AskPassword and AskTextBox functions.

WIL Dialog Editor

More often, application programmers want to create their own dialogs rather than using
predefined ones. The easiest way to create dialogs with WinBatch is to use the WIL
Dialog Editor to graphically create dialog format instructions. (We’ll cover the other
ways to create dialogs after this introduction to the WIL Dialog Editor and dialog
components.)

40

Chapter 3 : Dialogs and the Dialog Editor

To start the WIL Dialog Editor, select it from the WinBatch Studio’s Debug menu or
from the toolbar. The WIL Dialog Editor window appears with a blank dialog box

After entering a name for the dialog box and setting any other global options desired, you
can proceed to customize your dialog box by adding the elements, or controls, that you
want this dialog to have. Controls include the buttons, boxes, and text that appear in the
dialog box. To insert a control, select Insert from the WIL Dialog Editor’s menu bar and
a menu will appear offering a choice of controls.

These can also be selected from the toolbar by clicking on an icon for the desired control.

41

Introduction to Programming

You set both the dialog caption – the name that will appear in its title bar – and
the dialog name – the name used in the WinBatch program to display the dialog
box – by double-clicking anywhere in the dialog (shaded portion) except on a
control or other dialog object. In response, the Dialog Attributes and Control
Defaults appears allowing you to modify attributes of the dialog box as a whole.

In the example following, a calendar control has been added to the dialog box. The
calendar is created with default attributes and shows the current date – August 22, 2010 –
both as the month and year at the top with the day of the month circled as well as the
month/day/year at the bottom.

If the dialog box you are creating already contains a control that can appear only
once in a dialog, such as a file list box, that control choice will be grayed-out
and cannot be selected.

Each control can be modified – right click on the control and select Attributes – to bring
up the Attributes dialog specific to the selected control.

42

Chapter 3 : Dialogs and the Dialog Editor

As the Attributes dialog box indicates, you can assign a Label (name), the tab order (the
order in which the tab key steps through controls) and a variable name to each control.
We will explain the requirements for defining each type of control after looking at an
example.

Constructing a dialog

The simplest way to construct a dialog is to begin by creating the individual
controls – using the Insert menu option and the Attributes dialog to create each
control – without worrying about the overall layout dialog.

Once you’ve created the basic controls, the mouse can be used to arrange and/or
resize the controls as desired. Also, at the same time, the dialog as a whole can
be resized.

Thus, if you begin with a large dialog to allow yourself adequate space for
arranging your controls, you can do a rough layout, then – subsequently – you
can resize the individual controls, optimize the layout and resize the dialog as
needed.

To change a control after it is created; simply double-click on the control to
bring up the Control Attributes dialog.

To remove a control from the dialog, click on the control and then hit the
DELETE key.

43

Introduction to Programming

Finally, when you are satisfied with the layout of the dialog, save your work.

Saving a dialog

To save a dialog, you have several options.

First, you can save your work as a separate .WBT (WinBatch scripT) file. This
will be a flat-ASCII (text) file which contains the instructions for the dialog
caption and the individual controls.

Second, you can also save your work to the clipboard and then paste the dialog
format instructions directly into your .WBT script file (application source code).
This is the simplest method since the dialog script appears within your program
script making it easy to refer to or to modify as desired. This is also the format
which will appear in virtually all of the demo programs in this book.

Note that the saved dialog format instructions will contain the dialog version
header information, the layout instructions for the dialog controls and, last, the
default command for executing the dialog as:

ButtonPushed = Dialog("MyDialog")

Editing a dialog layout

If the dialog has been saved as a .WBT file, then the file can be opened by the
dialog editor using the File / Load command.

Alternately, the dialog format instructions can be copied from your .WBT script
file (to the clipboard) and then copied from the clipboard into the dialog editor
using File / Load from Clipboard.

The dialog format instructions can also be edited directly within the .WBT
script.

A Sample Dialog: WILDialog.wbt

Below, the WIL Dialog shows an example dialog containing examples of most of the
control types.

44

Chapter 3 : Dialogs and the Dialog Editor

Notice that several of the dialog controls (at left) have been assigned non-default
text colors by changing the individual attribute values for each.

The WILDialog.wbt example produces the following script:

DirChange(DirScript())

ibVariable1 = "Red":@tab:"White":@tab:"Blue":@tab:"Green":@tab:
"Black":@tab:"Gray":@tab:"Orange":@tab:"Yellow":@tab:"Mauve":@tab:"Char
truse":@tab:"Peach":@tab:"Apricot"

MyDialogFormat=`WWWDLGED,6.2`

MyDialogCaption=`WIL Dialog`

MyDialogX=-1

MyDialogY=-1

MyDialogWidth=392

MyDialogHeight=332

45

Introduction to Programming

MyDialogNumControls=028

MyDialogProcedure=`DEFAULT`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

MyDialog001=`023,009,180,192,GROUPBOX,"GroupBox_1",DEFAULT,"GroupBox",D
EFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog002=`039,023,038,010,RADIOBUTTON,"RadioButton_1",rbVariable,"Ra
dioButton",1,20,DEFAULT,"Microsoft Sans
Serif|5325|40|34","255|0|0",DEFAULT`

MyDialog003=`039,053,038,008,CHECKBOX,"CheckBox_1",cbVariable1,"CheckBo
x",1,30,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|255|0",DEFAULT`

MyDialog004=`039,075,030,010,EDITBOX,"EditBox_1",ebVariable1,"EditBox",
DEFAULT,40,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|0|255",DEFAULT`

MyDialog005=`039,101,038,010,STATICTEXT,"StaticText_1",DEFAULT,"StaticT
ext",DEFAULT,50,DEFAULT,"Microsoft Sans
Serif|5325|40|34","0|255|255",DEFAULT`

MyDialog006=`039,125,036,010,VARYTEXT,"VaryText_1",vtVariable1,"VaryTex
t",DEFAULT,60,DEFAULT,"Modern|5632|40|65330","128|128|128",DEFAULT`

MyDialog007=`037,147,152,046,MULTILINEBOX,"MultiLineBox_1",mlVariable1,
"MultiLineBox",DEFAULT,70,DEFAULT,"Microsoft Sans
Serif|5325|140|34","255|0|255",DEFAULT`

MyDialog008=`143,023,048,020,PICTUREBUTTON,"PictureButton_1",DEFAULT,"P
ict button 1",2,80,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

MyDialog009=`143,053,048,023,DROPLISTBOX,"DropListBox_1",dlVariable1,DE
FAULT,DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog010=`143,075,046,010,SPINNER,"Spinner_1",spVariable1,"1",DEFAUL
T,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog011=`143,101,044,032,PICTURE,"Picture_1",DEFAULT,"Picture",DEFA
ULT,110,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

MyDialog012=`261,013,100,032,FILELISTBOX,"FileListBox_1",flVariable1,"W
ILDialog.wbt",DEFAULT,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog013=`263,067,100,032,ITEMBOX,"ItemBox_1",ibVariable1,DEFAULT,DE
FAULT,130,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog014=`263,119,100,080,CALENDAR,"Calendar_1",caVariable1,DEFAULT,
DEFAULT,140,DEFAULT,DEFAULT`

MyDialog015=`025,223,336,074,COMCONTROL,"ComControl_URL",DEFAULT,"http:
//www.winbatch.com",DEFAULT,150,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog016=`103,023,034,008,STATICTEXT,"StaticText_PictureButton",DEFA
ULT,"PictureButton",DEFAULT,160,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|128|0",DEFAULT`

46

Chapter 3 : Dialogs and the Dialog Editor

MyDialog017=`103,053,036,008,STATICTEXT,"StaticText_DropListBox",DEFAUL
T,"DropListBox",DEFAULT,170,DEFAULT,"Microsoft Sans
Serif|5632|40|34","128|128|0",DEFAULT`

MyDialog018=`103,075,036,008,STATICTEXT,"StaticText_Spinner",DEFAULT,"S
pinner",DEFAULT,180,DEFAULT,"Microsoft Sans
Serif|5632|40|34","128|0|0",DEFAULT`

MyDialog019=`103,103,032,012,STATICTEXT,"StaticText_Picture",DEFAULT,"P
icture",DEFAULT,190,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|255|0",DEFAULT`

MyDialog020=`217,025,028,012,STATICTEXT,"StaticText_FileListBox",DEFAUL
T,"FileListBox",DEFAULT,200,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|0|128",DEFAULT`

MyDialog021=`217,075,028,012,STATICTEXT,"StaticText_ItemBox",DEFAULT,"I
temBox",DEFAULT,210,DEFAULT,"Microsoft Sans
Serif|5632|40|34","128|0|128",DEFAULT`

MyDialog022=`217,147,032,012,STATICTEXT,"StaticText_Calendar",DEFAULT,"
Calendar",DEFAULT,220,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|128|128",DEFAULT`

MyDialog023=`025,207,044,012,STATICTEXT,"StaticText_COMCONTROL",DEFAULT
,"COMControl",DEFAULT,230,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog024=`000,000,000,000,MENUBAR,"Dialog_Bar"`

MyDialog025=`000,000,000,000,MENUITEM,"mbi1_Help","Dialog_Bar","Help",D
EFAULT,10,DEFAULT`

MyDialog026=`000,000,000,000,MENUITEM,"mbi2_About","mbi1_Help","About",
DEFAULT,10,DEFAULT`

MyDialog027=`121,303,044,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
240,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog028=`235,303,044,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,250,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed = Dialog("MyDialog")

In the actual script, each control specification appears as a single line, the
separate fields being comma-delimited for identification.

The syntax for a dialog format specification begins with a format identifier:

MyDialogFormat=`WWWDLGED,6.2`

This line provides the crucial information that the format used is the WIL interpreter
version 6.2, a format which also imposes a limit of 30 characters for variable names.

The next section defines the format for the dialog box, beginning with the caption for the
dialog box (WIL Dialog) and followed by the screen position, the size, the number of

47

Introduction to Programming

controls in the dialog (28) and the global attribute settings for procedure, text font, text
color, background color:

MyDialogCaption=`WIL Dialog`

MyDialogX=-1

MyDialogY=-1

MyDialogWidth=392

MyDialogHeight=332

MyDialogNumControls=028

MyDialogProcedure=`DEFAULT`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

The font and text colors can be customized for individual control objects by setting the
attributes for specific controls. The background attribute specifies the .bmp image
displayed by the PICTURE and PICTUREBUTTON controls.

This NumControls specification for the number of controls is important. If you
edit a dialog script after it has been created and change the number of controls,
you must also change the number specified in the NumControls line of the
script. If you add controls and don’t change the specification to match, the active
dialog will display only the number of controls noted in this section of the
format specification. On the other hand, if you increase the NumControls value
beyond the number of controls actually defined, an error will occur when
WinBatch fails to locate the correct number of controls.

Dialog Controls

Eighteen types of controls can be used in dialog boxes: CALENDAR, CHECKBOX,
COMCONTROL, DROP LIST BOX, EDIT BOX, FILE LIST BOX, GROUP BOX, ITEM BOX, MENU BAR,
MENU ITEM, MULTILINE BOX, PICTURE, PICTURE BUTTON, PUSH BUTTON, RADIO BUTTON,
SPINNER, STATIC TEXT, and VARIABLE TEXT.

The dialog controls are defined using this format:

<dlg-variable>nn = `x, y, width, height, type, control-name,
var/license-string, text/pre-selected item/progid/classid/moniker,
value, tab-order, style, font, textcolor, background

<dlg- The <dlg-variable> field identifies the dialog. In the WILDialog

48

Chapter 3 : Dialogs and the Dialog Editor

variable> example, this field appears simply as MyDialogCaption at the top and as
MyDialog001 through MyDialog028 for each of the controls defined.

nn the numerical identifier of the control in the dialog. These are sequential
numbers, from 001 through 200. (There is a limit of 200 controls in a
dialog.)

x horizontal position where the control appears in the dialog.

y vertical position where the control appears in the dialog.

width width of the control.

height height of the control. This field should appear as DEFAULT for all
controls except item boxes, file list boxes and pictures.

type type identifies the control as one of the eighteen types of controls.

control-
name

control-name is the name used to uniquely identify (reference) the
control. The control-name must be unique (within the dialog) and cannot
be more than 30 characters in length.

var/license-
string

var/license-string is the variable name associated with the control; see
Dialog in the WIL Reference Help file for details.

text /
pre-selected
item /
progid /
classid /
moniker

text: provides a text entry displayed inside or next to the control.

pre-selected item: indicates which item in a list or range is the default
item for the control.

progid/classid: is used with COMCONTROL controls and is the
programmatic identifier of an ActiveX, OLE or COM component control
that supports integration into an automation client container.

moniker: Two special monikers can be used in this attribute to implicitly
use the WebBrowser control or MSHTML COM component provided by
Internet Explorer.

value It is the value returned by the control if selected and must be within the
range 0..127.

tab-order tab-order is the sequence in which the tab key steps selection through
controls. This can be used to control the order of access independent of
screen position and also to determine which of two (or more)
overlapping controls appears on top. See Dialog in the WIL Reference
Help file for further details.

style controls the appearance and behavior of a control. Style options can be
combined using the bit-wise OR (|) operator but are easier to set using
the Style tab in the control’s Attributes dialog where only the relevant
options will appear. See Dialog in the WIL Reference Help file for
further details.

49

Introduction to Programming

font typeface used to display the control (normally default)

textcolor color used for the text display as an RGB specification (normally default;
i.e., black)

background either the .bmp image used for the picture or picturebutton controls or the
background color for a text field or default if neither is specified.

DEFAULT values can be overridden globally (for the entire dialog) or can be assigned
individually for each control object.

The values used for control positions and sizes and for dialog positions and sizes are
expressed in a unit of measure known as dialog units. These units vary according to the
system font selected by the user. In brief, the units are:

1 dialog unit width = ¼ the average width of the system font

1 dialog unit height = 1/8 the height of the system font

4 dialog units width = average width of the system font

8 dialog units height = height of the system font

WIL interpreter restrictions limit variable names to 30 characters in length. A
name longer than this may not be recognized correctly.

Pushbuttons <PUSHBUTTON>
As a general rule, selecting a pushbutton in a dialog will close the dialog. However, you
can have your program recognize the button, take an action or set a value, and then
reopen the dialog to show the modifications.

In the WILDialog.wbt example, two pushbuttons are defined, one of which returns 0
(zero) as a Cancel button.

MyDialog027=`121,303,044,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
240,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog028=`235,303,044,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,250,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Each pushbutton in the example has a different vertical position and returns a different
value. The width for each button is specified as 44 dialog units; the height for each button
is specified as 14 units. In addition, the var field for each is also DEFAULT, which is a
requirement for pushbutton controls.

As another example, the PushButton.wbt script displays six pushbuttons:

50

Chapter 3 : Dialogs and the Dialog Editor

Clicking on any of these buttons, with the exception of the Cancel button, causes the
dialog to re-display, showing which button was pushed. Clicking on the Cancel button
closes the dialog (without reopening it) but does pop up a message box reporting the
cancellation.

A few rules apply to pushbuttons:

• The var field for all pushbuttons should be DEFAULT. Pushbuttons are identified
only by the value returned by the dialog when the button is activated. For proper
identification, each pushbutton should return a unique number value.

• Any pushbutton returning a value of 0 will either terminate the application or, if
a label marked :CANCEL is supplied in the program; execution will go to the label.
(This element is also demonstrated in the PushButton program, where it allows us
to report that the Cancel button was selected before terminating.)

Using labels for program flow control is a topic introduced and discussed
in Chapter 8.

Radiobuttons <RADIOBUTTON>
Radiobuttons normally appear as groups of two or more and are used to select one item
from a group of options. Only one radiobutton in a group can be selected at any time, but
one radiobutton must always be selected.

For radiobuttons, grouping is provided by giving each button in a group the same variable
name but assigning each button a unique value. By default, when the dialog appears, the
button with a value of 1 will already be selected. To have a different radiobutton appear
as the initial selection, the variable associated with the group (called the var member) is
assigned the value of the desired button before the dialog is called.

Changing the radiobutton default

Assume that we have a dialog with three radiobuttons each associated with the
variable rbRadiobutton but with values 1, 2 and 3. If your program code reads:

 rbRadiobutton = 2

51

Introduction to Programming

…before calling the dialog as:

ButtonPushed = Dialog("MyDialog")

… the dialog will appear with the second radiobutton as the default selection.

In the WILDialog example, the specification for a radiobutton control appears as:

MyDialog002=`039,023,038,010,RADIOBUTTON,"RadioButton_1",rbVariable,"Ra
dioButton",1,20,DEFAULT,"Microsoft Sans
Serif|5325|40|34","255|0|0",DEFAULT`

In this instance, since there is only one radio button displayed, this button is checked by
default. Like pushbutton controls, radiobutton controls are specified with a position and
width, but the control height is left as DEFAULT. Unlike the pushbutton controls, however,
the radiobutton has a value member identified as rbVariable. If there were other
buttons in this group, all of them would have the same variable name but would have
different values assigned.

Alternately, we might have several groups of radiobuttons where the groupings were
created by the variable members associated with each button. For
example, RadioButton.wbt defines three groups of radio buttons, identified by the
variables: rbColor, rbSize and rbStyle:

MyDialog003=`001,004,041,011,RADIOBUTTON,"RadioButton_1",rbColor,"Red",
1,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog004=`001,022,041,010,RADIOBUTTON,"RadioButton_2",rbColor,"Blue"
,2,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog005=`001,041,041,011,RADIOBUTTON,"RadioButton_3",rbColor,"Green
",3,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog006=`042,004,042,011,RADIOBUTTON,"RadioButton_4",rbSize,"Small"
,1,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog007=`042,022,042,010,RADIOBUTTON,"RadioButton_5",rbSize,"Medium
",2,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog008=`042,041,042,011,RADIOBUTTON,"RadioButton_6",rbSize,"Large"
,3,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog009=`087,004,041,011,RADIOBUTTON,"RadioButton_7",rbStyle,"Moder
n",1,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog010=`087,022,041,010,RADIOBUTTON,"RadioButton_8",rbStyle,"Class
ic",2,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog011=`087,041,041,011,RADIOBUTTON,"RadioButton_9",rbStyle,"Fancy
",3,110,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Here each group could have a different default radiobutton set as, for example:

52

Chapter 3 : Dialogs and the Dialog Editor

rbColor = 2
rbSize = 3
rbStyle = 1

When the dialog exits, the variable for each group contains the value for the currently
selected radiobutton.

Checkboxes <CHECKBOX>
In the WILDialog example, the checkbox specification appears as:

MyDialog003=`039,053,038,008,CHECKBOX,"CheckBox_1",cbVariable1,"CheckBo
x",1,30,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|255|0",DEFAULT`

Checkboxes may appear singly or in groups, and selections may include none, one, or
many. The only restrictions are that each checkbox must have a unique variable. Each
checkbox has a value of zero (0) when unchecked and a value of one (1) when checked.
By default, all checkboxes are cleared when a dialog opens but they may be set to show
as checked by giving them a value of 1.

The CheckBox.WBT script displays five checkboxes and two pushbuttons:

When the dialog exits, the checkboxes can be polled by checking the value of each
variable. If the checkbox is clear, the value will be 0; if set (marked), the value will be the
numerical value assigned to the checkbox.

Alternatively, a group of checkboxes may share a single variable name but have different
values, with each value a power of two (1, 2, 4, … , 32, 64, and so on). When a single
variable name is used, the value returned will be a combination of the values of the
selected checkboxes. After return, individual flag values can be identified by XORing the
return value with the values assigned to specific checkboxes.

Bit flags and binary XOR operations will be discussed in Chapter 5 under
Bitwise Operators.

53

Introduction to Programming

Edit Boxes <EDITBOX>
An edit box is a window in a dialog where the user may enter text or numerical values.
There are no restrictions on the nature of the text entry, and any entry will be assigned to
the associated variable.

The entry for the edit box in the WILDialog example is:

MyDialog004=`039,075,030,010,EDITBOX,"EditBox_1",ebVariable1,"EditBox",
DEFAULT,40,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|0|255",DEFAULT`

By default, when a dialog is displayed, edit boxes will be empty. Alternatively, you can
assign a string or number value to the edit box before calling the dialog, and that will
appear as the default display.

The EditBox.WBT script displays both a standard edit field and a password entry field:

The two edit boxes shown above are effectively the same control; both are simply edit
boxes. The edit box for the password, however, has the Password attribute set (below) in
the Style tab of the Attributes dialog.

54

Chapter 3 : Dialogs and the Dialog Editor

This setting insures that any entry in the password edit box – including any default entry
set in the General tab of the Attributes dialog – is displayed as a series of asterisks.

Alternately, if the variable name for an edit box begins with PW_, the editbox entry is
treated as a password.

Note also that the edit box can be set to permit only a numerical entry.

The variable associated with an edit box may be treated as one of the following:

• A string — an entry containing alphabetic characters or nonnumeric punctuation
is recognized as a string.

• An integer — an entry containing only numbers is identified as an integer. Note
that entries with leading spaces will be identified as integers; those with
embedded or trailing spaces will be recognized as strings.

• A floating-point number — an entry containing only numbers and a single
decimal point is identified as a floating-point value.

Static (Fixed) Text <STATICTEXT>
A static text control doesn't actually do anything aside from providing a method of
displaying descriptive text (labels) or instructions. One static text control specification in
the WILDialog example is:

MyDialog005=`039,101,038,010,STATICTEXT,"StaticText_1",DEFAULT,"StaticT
ext",DEFAULT,50,DEFAULT,"Microsoft Sans
Serif|5325|40|34","0|255|255",DEFAULT`

A text entry is limited to a single line with a maximum of 150 characters. The var field
for a static text control is always DEFAULT.

If you need to display more than 150 characters as fixed text, such as for a lengthy
explanation, use multiple static text controls.

Variable Text <VARYTEXT>
A variable text control is used to display a label or instruction that can be changed by the
application by assigning a new string to the associated var member. If no assignment has
been made, the control defaults to the string entered in the text field when the control was
defined. In the WILDialog example, the variable text control specification is:

MyDialog006=`039,125,036,010,VARYTEXT,"VaryText_1",vtVariable1,"VaryTex
t",DEFAULT,60,DEFAULT,"Modern|5632|40|65330","128|128|128",DEFAULT`

Another example of a variable text control appears in the PushButton.wbt demo (see the
“Pushbuttons” section earlier). In that example, the variable text control in the dialog
reports which button was pushed.

55

Introduction to Programming

Item (List) Boxes <ITEMBOX>
Item, or list, boxes are used to display a list of items for selection. The item box control
in the WILDialog example is specified as:

MyDialog013=`263,067,100,032,ITEMBOX,"ItemBox_1",ibVariable1,DEFAULT,DE
FAULT,130,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Items are presented for selection by assigning a tab-delimited list to the var member
associated with the list box control. A tab-delimited list is simply a list with the entries
separated by tab characters. In WinBatch Studio, the default tab spacing is three
characters and the tab character appears as a small, double-arrow (»). In WinBatch
specify @tab when building the string. Here’s an example:

ibVariable1 = "Red":@TAB:"White":@TAB:"Blue":@TAB:"Green":@TAB:
"Black":@TAB:"Gray":@TAB:"Orange":@TAB:"Yellow":@TAB:"Mauve":@TAB:"Char
truse":@TAB:"Peach":@TAB:"Apricot"

The list is loaded in the original order, and users may select none, one, or several items
from the list. (If a sorted list is desired, use the ItemSort function introduced and
demonstrated in Chapter 6.)

The ListBox.wbt script demonstrates a list box entry and selection:

When the dialog closes, item selections from the list box are returned in the var member
associated with the list as a tab-delimited list.

While there is no limit to the number of items appearing in a list box, there is a
limit to the number of items which can be selected. Selection is limited to 99
items and, if more items are selected, an error will occur.

56

Chapter 3 : Dialogs and the Dialog Editor

File List Boxes <FILELISTBOX>
The FILELISTBOX control creates a drive/directory/file selection list, allowing the user
to navigate directories and drives and to select a file or directory. The file list box
specification in the WIL Dialog example is:

MyDialog012=`261,013,100,032,FILELISTBOX,"FileListBox_1",flVariable1,"W
ILDialog.wbt",DEFAULT,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The text field for a file list box is always DEFAULT.

The var member associated with the control returns the selection as a filename. The
DirGet function can be used, after the dialog closes, to retrieve the drive/path
specification for the active directory.

When the dialog opens, the file list box displays a list of all files matching the file mask.
The default file mask is *.* (all files). To restrict the display to just certain files, you can
assign a specific file mask to the var member before calling the dialog. This is done in
the FileListBox.wbt demo program:

In this example, a file mask might be used as:

 flVariable1 = "*.wbt"

This mask restricts the file display to show only WinBatch dialog files.

If a file list box is combined with an edit box control using the same var member name,
the user can enter a file mask or file specification directly. This will cause the file list box
to be redisplayed with the appropriate file list. The FileListBox.wbt demo also shows
how a variable text (VARYTEXT) control using the FILELISTBOX var name can be included
to show the drive/directory (path) currently displayed in the list box.

57

Introduction to Programming

Default behavior for a dialog containing a file list box requires a selection to be made
before the dialog can close (except, of course, if the operation is canceled). The statement
IntControl(4,0,0,0,0) can be included anywhere prior to calling the Dialog function
to permit the dialog to close without a file selection.

Calendar <CALENDAR>
The CALENDAR control displays a calendar with the current date shown but allowing the
user to select a different date by selecting a day from the displayed calendar or selecting a
different month and/or year and then selecting a date. The calendar specification in
the WIL Dialog example is:
MyDialog014=`263,119,100,080,CALENDAR,"Calendar_1",caVariable1,DEFAULT,
DEFAULT,140,DEFAULT,DEFAULT`

The current date is shown both at the bottom of the calendar and circled on the current
date while the gray oval begins with the current date but will show any day selected by
the user.

At the top, the two arrows step forward or backward by months; clicking on the year
brings up a spinner to go forward or back by years. As the months and years scroll, the
selected day of the month remains highlighted. Clicking on the Today or on the date
shown at the bottom of the calendar takes you back to the current year, month, and day.

The selected date will be returned in the standard YYYY:MM:DD:HH:MM:SS format.

ComControl <COMCONTROL>
The COMCONTROL is a template to host an ActiveX, OLE, VB or COM component. If
the WIL Dialog doesn't support a specific type of control, you can use a third party dialog
component using the COMCONTROL. You indicate the specific control by placing a
programmatic identifier (progid), class identifier (classid) or moniker in the text attribute

58

Chapter 3 : Dialogs and the Dialog Editor

of the COMCONTROL definition string. The COMCONTROL specification in the WIL
Dialog example is:

MyDialog015=`025,223,336,074,COMCONTROL,"ComControl_URL",DEFAULT,"http:
//www.winbatch.com",DEFAULT,150,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The COMCONTROL supports rendered HTML in WIL Dialogs using either the WebBrowser
Control or the MSHTML component of Internet Explorer. In order to use Internet
Explorer controls in WIL dialogs you must have at least version 4.0 of Internet Explorer
installed on the system. The WebBrowse feature is shown in the ComControl.wbt
example.

Refer to Dialog entry in the WIL Reference Help file for further details about
COMCONTROLS.

The DropList Box <DROPLISTBOX>
The DROPLISTBOX is a combination of the EDITBOX and a drop-down ITEMBOX. The
DROPLISTBOX control allows the user to enter a value in the EDITBOX or select a suggested
entry from the drop-down ITEMBOX.

Just as with a regular ITEMBOX, a tab-delimited list is used to load the drop-down
ITEMBOX to the control’s VARIABLE attribute; the EDITBOX portion of the control can be
given an initial value by placing a string in the TEXT attribute. The user’s selection is
returned in the VARIABLE attribute.

The DROPLISTBOX specification in the WIL Dialog example is:

59

Introduction to Programming

MyDialog009=`143,053,048,023,DROPLISTBOX,"DropListBox_1",dlVariable1,DE
FAULT,DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The GroupBox control <GROUPBOX>
The GROUPBOX is simply a rectangular outline with a text label in the upper-left corner.
A GROUPBOX is used to surround a group of controls serving a single purpose or aim with
the function indicated by the label. The GROUPBOX is a visual aide only and any grouping
of controls is up to the designer.

The GROUPBOX specification in the WIL Dialog example is:

MyDialog001=`023,009,180,192,GROUPBOX,"GroupBox_1",DEFAULT,"GroupBox",D
EFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The Spinner Control <SPINNER>
The SPINNER control consists of a pair of arrow buttons which can be used to increment
or decrement a value in the attached EDITBOX.

The control’s VARIABLE attribute is used to set the SPINNER’S range of values. The
variable is given a list delimited with a vertical bar (|) and containing two or three values
as: “{MINIMUM}|{MAXIMUM}|{STEP}”. The MINIMUM and MAXIMUM values must be in
the range –32768..36767 and the difference cannot exceed 32767.

The STEP argument is the amount to add (increment) or subtract (decrement). If no STEP
argument is specified, the STEP defaults to one (1).

An initial value for the SPINNER can be specified in the TEXT attribute of the control. If
you do not specify an initial value or the initial value is outside the min/max range, the
initial value will default to the minimum value.

The SPINNER specification in the WIL Dialog example is:
MyDialog010=`143,075,046,010,SPINNER,"Spinner_1",spVariable1,"1",DEFAUL
T,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The Multi-Line Box <MULTILINEBOX>
The MULTILINE control permits the entry of multiple lines of text. In all other respects,
the MULTILINE control behaves like an EDITBOX control.

The MULTILINE specification in the WIL Dialog example is:

60

Chapter 3 : Dialogs and the Dialog Editor

MyDialog007=`037,147,152,046,MULTILINEBOX,"MultiLineBox_1",mlVariable1,
"MultiLineBox",DEFAULT,70,DEFAULT,"Microsoft Sans
Serif|5325|140|34","255|0|255",DEFAULT`

The Picture Button Control <PICTUREBUTTON>
The PICTUREBUTTON control is a pushbutton displaying an image instead of a text label.
The image is set per the PICTURE control.

The PICTUREBUTTON specification in the WIL Dialog example is:
MyDialog008=`143,023,048,020,PICTUREBUTTON,"PictureButton_1",DEFAULT,"P
ict button 1",2,80,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

The Picture Control <PICTURE>
The PICTURE control is used to display a bitmap image by specifying the filename and,
optionally, the path where the bitmap is found, in the BACKGROUND attribute for the
control. Be aware that bitmap will be resized to match the PICTURE control so the control
should have an aspect ratio similar to the image to prevent distortion.

A text string can also be entered in the TEXT attribute and displayed when the image
cannot be found.

The PICTURE specification in the WIL Dialog example is:
MyDialog011=`143,101,044,032,PICTURE,"Picture_1",DEFAULT,"Picture",DEFA
ULT,110,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

Menus

WIL Dialogs support menus. Menus are made up of both a MENUBAR and MENUITEMS.
The WIL Dialog example contains the Menu option Help |About:

A MENUBAR is a horizontal bar that appears at the top of your dialog just below the title
bar. A menu bar contains menu items. Generally, menu items displayed in the menu bar
cause dropdown menus to be displayed when selected by the user.

61

Introduction to Programming

MENUITEMs can be displayed on a menu bar or as a menu item associated with a drop-
down, context menu or submenu. Dropdown menus are created by placing the name of a
MENUITEM displayed in the menu bar in the parent attribute of the menu item's template
entry. A submenu is started by placing the name of a MENUITEM other than a menu bar
displayed menu item in the parent attribute.

Context menus are usually activated by right-clicking the client area of a control or
dialog. Create context menus by specifying the name of a control in the parent
attribute. If you use the DEFAULT keyword as the MENUITEM parent, the context menu will
by associated with the dialog and display when the user right clicks on an 'empty' area of
the dialog or on any control that does not already have a system or template supplied
context menu.

The MENU specification in the WIL Dialog example is:

MyDialog024=`000,000,000,000,MENUBAR,"Dialog_Bar"`

MyDialog025=`000,000,000,000,MENUITEM,"mbi1_Help","Dialog_Bar","Help",D
EFAULT,10,DEFAULT`

MyDialog026=`000,000,000,000,MENUITEM,"mbi2_About","mbi1_Help","About",
DEFAULT,10,DEFAULT`

Tab Order

In a dialog box, tab order is the sequence in which the Tab key will step between
controls. By default, the first control in the tab order always has the initial focus (as
shown by a heavy outline) and will be the control activated when the Enter key is
pressed.

Pressing the ESCAPE (or ESC) key is the same as selecting a button with the
return value 0, normally the CANCEL or EXIT button.

The tab order is determined by the sequence of numbers in the control identifiers. For
example, in the PushButton.wbt demo, there are 7 controls, defined as:

PushButtonDialog001=`085,049,036,012,PUSHBUTTON,"PushButton_Cancel",DEF
AULT,"Cancel",0,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog002=`017,009,036,012,PUSHBUTTON,"PushButton_1",DEFAULT,
"Push 1",1,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog003=`053,009,036,012,PUSHBUTTON,"PushButton_2",DEFAULT,
"Push 2",2,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog004=`089,009,036,012,PUSHBUTTON,"PushButton_3",DEFAULT,
"Push 3",3,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog005=`125,009,036,012,PUSHBUTTON,"PushButton_4",DEFAULT,
"Push 4",4,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

62

Chapter 3 : Dialogs and the Dialog Editor

PushButtonDialog006=`161,009,036,012,PUSHBUTTON,"PushButton_5",DEFAULT,
"Push 5",5,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog007=`063,031,088,010,VARYTEXT,"VaryText_1",vtVariable1,
"No buttons have been pushed
yet...",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

The first control, PushButtonDialog001 (CANCEL button) will have focus initially
because it has the lowest tab value (10).

PushButtonDialog002 through PushButtonDialog006 each have consecutive tab
values and will each receive the focus, one after the other.

Last, PushButtonDialog007 is a varytext control, which cannot be edited or hold the
focus at any time, so the tab key takes the focus to the next control in the sequence which
… surprise … is the CANCEL pushbutton.

To observe the tab order in operation, run the RadioButton.wbt demo and use the Tab key
to step through the controls. Notice how the focus is shown by highlighting (or an
outline) as each control becomes the active control. Also notice that in the radiobutton
group, only the selected button has the focus.

In the FileListBox.wbt demo, you can use the up and down arrow keys to change the
selection, and the highlight will follow. Similarly, once the file list box has the focus, the
up and down arrow keys can be used for selection within the list.

You can change the tab order in any of the demo programs simply by
renumbering the tab values of the controls. As a suggestion, however, it may be
easiest if you rearrange the control definitions to the order desired and then
renumber them sequentially. But be careful, because errors in numbering will
cause WinBatch to reject the script or to run the script incorrectly.

Summary

We’ve discussed using dialogs and how the Dialog Editor works. The descriptions of
dialog controls included a variety of examples (source files for each are included
in Appendix A), showing how the various controls function.

As for the Dialog Editor, your best resource for further instruction is quite simple: play
with it, add and remove controls and experiment with their placement. A little familiarity
will pay dividends in the long run.

In discussing the various dialog controls, we have not talked about the program code used
to report or act on the selections made in the various examples. This has not been an
oversight. Coverage of program reporting and responses has only been deferred until
these elements of programming could be introduced and discussed in proper depth, as
will be done in subsequent chapters. For the present, please experiment with the various
dialog examples. Feel free to make changes and to observe the results.

63

Introduction to Programming

64

Next, in Chapter 4, we will be looking at the basics of the programmer's computer
vocabulary: the simple nouns that are used to define data types and variables.

Chapter 4 : Computer Vocabulary – Part I

CHAPTER 4 : COMPUTER VOCABULARY – PART I
SIMPLE NOUNS – DATA TYPES AND VARIABLES

"When I use a word," Humpty Dumpty said, in a rather scornful tone," it means
just what I choose it to mean— neither more nor less." (Lewis Carroll, Through
the Looking-Glass)

"The time has come," the Walrus said, "To talk of many things:" (ibid)

One of the elements in programming that seems to confuse some people—especially
lawyers and English majors—is that words can mean virtually anything we choose them
to. What is called an apple at one point may suddenly become an orange at another point,
or even become an animal or a mineral rather than a vegetable at all.

The reason is that in programming we use words as labels, in the manner expounded by
H. Dumpty. We may change these labels at various times. Thus, if we so choose, it is
perfectly legitimate to write instructions that say:

apples = oranges

or

pears = apples * oranges

Granted, these are deliberately “cute” examples, where the names of fruits are used to
arbitrarily represent unspecified objects or values. In the second example, apples might
be an item price, oranges the item count, and pears the total price, which would then be
multiplied by grapefruit (the tax rate) to return lemons as the sales tax.

The point to recognize here is that the names used for various elements are simply labels;
names do not always reflect what the elements actually contain or are used to represent.
(Of course, as a matter of general practice, we normally attempt to choose names that do
reflect the types of values or operations that we are undertaking; we’ll talk more about
choosing names later in this chapter.)

The term data types refers to the kinds of values your WinBatch programs can use.
While the data types themselves are fixed and immutable, the names we use to refer to
instances of a particular data type are fluid and infinitely varied. Thus, it is important that
you do not confuse the data type (fixed, or constant) with the data label (variable).
Before we look at the various data types, let’s clarify the difference between a variable
and a constant.

65

Introduction to Programming

Variables versus Constants

Suppose we enter the following statement in a program:

nApples = 10

Because a new value could be assigned to nApples at any time, the term nApples is
referred to as a variable. Program variables are used to store information or values for use
by the application. Think of a variable as a box used to hold information. To access the
information in that box, you refer to the box's label or name.

Variables are also referred to as variable members or as vars in some cases. The
terms are identical in meaning and maybe used interchangeably.

The value of 10 currently assigned to the variable nApples is called a constant, because
this value will change only if we rewrite the program. In like fashion, when a string is
written as part of the program code, the string itself is a constant, but the var member
containing the string is a variable.

A constant variable (or a variable constant) may sound like an oxymoron … and
in simple English, it is … and the second form, in any sense, always is. The
term constant variable, however, is not because we can create a variable – an
element which has the potential to change – but give it a constant value – a
value which does not change, ergo, a constant variable.

WinBatch Data Types

WinBatch supports five basic data types: integers, floating-point numbers, strings, arrays
and huge numbers. The basic data types are constants, but keep in mind that all of these
types may also refer to variable members containing values of these types.

Integer Constants
An integer is a whole number (such as 1, 2, 99, 256, 783, and so on) and can be a
negative value (–1, –2, –99, and so on). Integers do not include fractions or decimal
values. In other words, integers are values we can count on our fingers and toes (if we
have enough hands and feet, of course).

Integer values can range from –2,147,483,648 through 2,147,483,648 (roughly plus or
minus two billion) or, more compactly, from –231+1 to +231–1.

Floating-Point Constants
Floating-point numbers, called floats for short, are decimal or fractional numbers, such as
3.14159 (π), 2.7182 (ε), 6.66666…, –4.576E23 (exponential), 0.000013579, or 27e197

66

Chapter 4 : Computer Vocabulary – Part I

(exponential). As you can see, floating-point numbers can be expressed in several formats
and can include a plus (+) or minus (–) sign, as well as a decimal point (.) and an E or e
(for exponential notation).

Floating-point numbers can range from negative to positive 1.0e+300 (a number too large
to represent practically in a conventional numeric format).

0 Assigning a floating-point constant outside the permitted range may
produce unpredictable results.

A floating-point number must begin with a digit. For example, .00002 is not permitted,
but 0.00002 is allowed.

String Constants
A string is simply text, such as a word, a sentence, or a paragraph. WinBatch does not
support instructions carried over multiple lines but it does allow individual lines up to
2048 characters in length.

In a program, a string must be defined by enclosing it within quotation marks (called
quotes for short). Three types of quote marks are used: double quotes ("), single quotes
('), and back quotes (`). The back quote is also referred to as an acute accent mark. All of
these are found on standard (English) keyboards.

Although each type of quote is permissible, the opening and closing quote must be the
same type. Thus, strings can be written as:

'a'
`tippie canoe and tyler too – whoop de do`
"The quick red fox jumped over the lazy brown dog"

If you want to include quotes within your string, use a quote mark different from the
embedded quote to enclose the string. As an example, the StringTest.wbt demo includes
the following two string formats:

sQuote = 'A simple string'

Message("This one's easy", sQuote)

sQuote = `It's Tommy this an' Tommy that,`:@CRLF:` an' "Chuck 'im
out, the brute".`:@CRLF:`But it's "Saviour of 'is country,"`:@CRLF:`
when the guns begin to shoot.`:@CRLF:`- R. Kipling`

Message("I quote, of course", sQuote)

exit

In this book, many examples contain a line break to fit on the printed page. In
the program code, the material must be written as a single line.

67

Introduction to Programming

In this example, the first string, sQuote, has been defined using single quotes and then
passed to the Message function. In the second example, since both double and single
quotes have been used in the string, the string has been enclosed using back quotes. In
this case, when sQuote is passed as a parameter to the Message function, back quotes
must be used again to enclose the argument. The predefined string constant @crlf
(described in the next section) generates a carriage return/line feed to format the
displayed string, producing this display:

If single or double quotes were used to enclose, or delimit, this string, WinBatch would
become confused and halt with an error. (Open the StringTest.wbt script and try this
yourself.)

The term delimit does not mean remove limits but is a contraction of denote
limits. Strings are delimited by quotes. In the same fashion, when we speak of a
tab-delimited list or a comma-delimited list, the reference is to the use of tab
characters or comma characters to denote the separation between list items.

Because strings are important in many respects, Chapter 6 is devoted to the topic of string
variables and string operations.

Array
The array data type is used to specify a variable that can be indexed. An array is intended
to describe a collection of elements.

If you think of a single variable as a box, an array is a shelf or shelves filled with
identical boxes where an individual box can be found by its shelf number and its
position on the shelf – such as second shelf, fourth box from the left.

Arrays are created using the ArrDimension function. An array may have from 1 to 5
dimensions, and can contain at least 10 million total elements, although this may be
constrained by available memory.

Array elements are referenced with their subscripts enclosed in square brackets. If an
array has more than one dimension, the subscripts are separated with commas.

Eg:
arrayvar[1]

68

Chapter 4 : Computer Vocabulary – Part I

arrayvar[1, 1]

arrayvar[0, 5, 2]

Array subscripts are 0-based. In other words, the first element in an array can be
referenced with the subscript zero: array[0].

Array elements can contain any type of WIL value: string, integer, float, etc. You can
have different types of values within an array.

You may not pass an array as a parameter to a WIL function (except for functions which
state they accept an array), or use it in any sort of operation.

For example:

Message("Value is", arrayvar) ; NOT legal

On the other hand, the following are all supported:

arrayvar[0] = 5

x = arrayvar[0]

Message("Value is", arrayvar[0])

arrayvar = 5 ; Redefines the array to integer type variable

x = arrayvar ; Creates a second variable that points to the array

You can pass arrays to user-defined functions, and you can return arrays with the Return
command.

When you pass an array name (i.e., not an array element) as a parameter to a function, the
array gets passed "by reference". That is, the function receives a pointer to the array, and
is therefore able to make changes to it "in place". This is similar to passing a binary
buffer handle to a function, where the function is then able to make wholesale changes to
the binary buffer.

In contrast, passing an array element (i.e., with a subscript) to a function is like passing a
regular string or integer parameter to a function -- it gets passed "by value". i.e. the
function receives the value of the array element, but is not able to modify the array itself.
By the same token, when you pass a string to a function like StrUpper:

newstring = StrUpper(oldstring)

The function does not modify the variable "oldstring" at all. If you want to modify the
existing variable, you can assign to it the return value of the function, eg:

69

Introduction to Programming

mystring = StrUpper(mystring)

array[2] = StrUpper(array[2])

WinBatch offers an assortment of functions supporting arrays, including:

• ArrayFileGet converts a file to a one-dimensional array.
• ArrayFileGetCsv converts a CSV (comma separated value) file into a two-

dimensional array.
• ArrayFilePut writes a one-dimension array to a file.
• ArrayFilePutCsv writes a two-dimension array to a CSV file.
• ArrayFromStr accepts a text string and returns a one dimension array with one

character per array element.
• ArrayInsert Performs in-place insertion of an element into a single dimension

array
• Arrayize converts a delimited list to an array.
• ArrayLocate searches an array for an element that matches a value.
• ArrayRedim changes array dimensions in-place.
• ArrayRemove performs in-place removal of an element from a single dimension

array, or the in-place removal of a row or column from a two dimension array.
• ArraySearch
• ArraySort performs an in-place sort of arrays with one or two dimensions.
• ArraySwapElements swaps elements in an array.
• ArrDimension creates an array.
• ArrayToStr accepts a single dimension array and returns a text string constructed

from the concatenation of each array element.
• ArrInfo gets information about an array.
• ArrInitialize initializes an array.

The ArrayTest.wbt demo shows how arrays can be used. First, we declare an array and
populate it with ten colors:

; Create an array from a list of elements

ColorArray = Arrayize("White,Yellow,Magenta,Chartreuse,Light Blue,Dark
Blue,Green,Brown,Gray,Black", ",")

; Get the number of elements

nMax = ArrInfo(ColorArray, 1))

Next, the ArrInfo function is used to retrieve the number of entries in the array. Granted,
we already know the size of the array – in this instance – but this information is not
always known in advance ... and, as you will see, may change during execution.

70

Chapter 4 : Computer Vocabulary – Part I

The ArrayTest.wbt program presents a dialog requesting a number from one (1) to nMax,
returning the entry as nNumber.

While @TRUE

 nSelectedColor = ""

 sPrompt = "Select a color by entering a number from 1 to " : nMax

 ButtonPushed = Dialog("ArrayTest")

Next it tests nNumber to ensure that it falls within the acceptable range (from 1 to nMax):

 Switch ButtonPushed

 case 1 ; Test button

 If(nNumber > 0 && nNumber <= nMax)

 nSelectedColor = ColorArray[nNumber-1]

 sReport = "The color you selected was " : nSelectedColor

 Else

 sReport = "The color you selected was NOT VALID"

 Endif

 break

The chosen array element is stored into nSelectedColor, which is passed back to the
dialog as the program loops.

Even though the size of the array was fixed when the array was allocated, we can resize
the array using the ArrayRedim function and then add a new entry.

For example, the ArrayTest.wbt demo adds a new element to the array of colors by first
resizing the array and then adding a new, user-defined color as the new array element,
thus:

 case 2 ; Add button
 Gosub NEWCOLOR
 break
 EndSwitch
EndWhile
exit

The line GoSub NEWCOLOR causes the script execution to jump to the label :NEWCOLOR,
which causes a new dialog to be displayed prompting the user to add a new color.

:NEWCOLOR

NewColorFormat=`WWWDLGED,6.2`

NewColorCaption=`New Color Entry`

71

Introduction to Programming

NewColorX=035

NewColorY=053

NewColorWidth=122

NewColorHeight=054

NewColorNumControls=005

NewColorProcedure=`DEFAULT`

NewColorFont=`DEFAULT`

NewColorTextColor=`DEFAULT`

NewColorBackground=`DEFAULT,DEFAULT`

NewColorConfig=0

NewColor001=`011,035,038,012,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
10,32,DEFAULT,DEFAULT,DEFAULT`

NewColor002=`071,035,038,012,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor003=`021,001,080,012,VARYTEXT,"VaryText_1",sNewColorPrompt,DEFA
ULT,DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor004=`013,017,038,012,STATICTEXT,"StaticText_1",DEFAULT,"Enter
color",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor005=`057,017,050,012,EDITBOX,"EditBox_1",sNewColor,DEFAULT,DEFA
ULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

nNext = nMax + 1

sNewColorPrompt = "The new item will be #" : nNext

sNewColor = ""

While @True

 ButtonPushed=Dialog("NewColor")

 if sNewColor == "" then continue ; loop until color is specified

 nMax = nNext

 ArrayRedim(ColorArray, nMax)

 ColorArray[nMax-1] = sNewColor

 break

Endwhile

return

Notice that the new entry is assigned to the element nMax-1, not to nMax. All arrays are
indexed from 0, not from 1 so the first element in the array (element 1) actually has an
index value of zero; thus the last (new) element in the array is indexed as nMax-1 where
nMax is the total number of elements (or entries).

72

Chapter 4 : Computer Vocabulary – Part I

ColorArray[nMax-1] = sNewColor

Likewise, attempting to access the array element nMax – which does not exist – will
result in an error.

Huge Numbers
Huge number is a special data type. It is a long decimal number string, which may
represent a number too large to be converted to an integer. This value cannot be modified
with standard arithmetic operations, it requires the use of the Huge Math extender.
Extenders are discussed in Chapter 16.

The Huge Arithmetic Extender contains a few functions which allows simple high-
precision math on extremely large numbers (up to 2000 digits). For example, the
Hugemath.wbt adds two extremely large numbers.

AddExtender("WWHUG34I.DLL")

num1 = "12345678901234567890"

num2 = "98765432109876543210"

ret = huge_Add(num1, num2)

Message("Result of large number addition", ret)

Here are some WIL functions which can return huge numbers:
BinaryReadEx

BinaryWriteEx

DirInfoToArray

DirSize

DiskFree

DiskSize

FileInfoToArray

FileSize

FileSizeEx

WinResources

 It is easy to see why many of these functions need to sometimes return huge number data
types; many modern day computers support very large disk and file sizes.

Predefined Constants

In addition to constants composed of the data types, WinBatch also offers a variety of
built-in constants. The predefined constants all begin with the at sign (@) character, as in
these simple ones:

73

Introduction to Programming

@NO @TILE @TRUE @YES
@ARRANGE @WAIT @STACK @FALSE

The names of these constants are case-insensitive, so it does not matter whether they are
spelled in uppercase, lowercase, or mixed case. For example, the predefined constant
@YES is the same as @yes or @Yes.

For the complete list of predefined constants, see the Windows Interface
Language Reference Help file.

In general, predefined constants are used for tests of various types where a return value or
a condition is compared to a predefined constant. For example, you might test if an
operation has completed successfully, if a condition has been satisfied, or if a specific
result has been reported.

The benefits of using predefined constants are convenience and accuracy. For example,
suppose that an operation returns a value of 1 if it is successful or 0 if a failure has
occurred. These could be tested directly as:

if nResult == 1 then…

However, it's clearer to say:

if nResult == @TRUE then…

In this fashion, the code becomes easier to read, and there's less chance for confusion
about what is being tested. (The if statement and other tests are discussed in Chapter 8.)

In other cases, predefined constants offer greater accuracy and reduce the chance of error
(by the programmer) where a test value is not a simple 0 or 1. For example, suppose that
we need to test to determine if the middle button of the mouse has been double-clicked.
Which would be easier: remembering the value 521 or referring to @MDBLCLICK? (You
could also test for the binary flag values, looking for a result of 001000001001, but this is
the kind of operation more suitable for binary-oriented machines than humans.)

Many of the values represented by the predefined constants are determined by
the operating system. Operating system-supplied API (application program
interface) functions return specific values as a response to operation requests.

Predefined String Constants
WinBatch defines four string constants, which are useful for formatting text or processing
text data:

74

Chapter 4 : Computer Vocabulary – Part I

@CRLF Carriage return/line feed

@CR Carriage return

@LF Line feed

@TAB Tab

The @CRLF constant is used in the StringTest.WBT demo to break the displayed text over
several lines, as shown in the “String Constants” section earlier in this chapter.

While the tab used in the WinBatch editor has a three-character width, the tab
spacing for displayed text is determined by the characteristics of the font being
used.

Predefined Floating-Point Constants
WinBatch supplies a variety of floating-point constants (20 entries), which can be used
for engineering and scientific scripts. Here are some examples of predefined floating-
point constants:

Constant Value Description

@E (ε) 2.718281828459045 Natural (Napierian) log base

@GFTSEC 32.174 Gravitational acceleration (ft/sec2)

@PI (π) 3.141592653589793 Ratio of the diameter to the circumference of a
circle

@RAD2DEG 57.29577951308232 Conversion constant for radians to degrees

WinBatch Program Variables

Many languages require variables to be declared as specific types before they can be
used. At the same time, the declaration allocates a space of a specific size—like choosing
a box of a particular size—to hold any data assigned to the variable. Once such a
declaration is made, only data of the declared type can be copied to the variable (although
data of other types may be typecast, or “converted,” to fit). This requirement is known as
strong typecasting.

In WinBatch, no prior declaration for a data variable is required. A variable used for an
integer at one point can become a floating-point value at another point, then be treated as
a string a moment later. This flexibility is demonstrated in the VariTest.wbt demo.

Although variables do not need to be declared, they do need to be initialized before they
can be used in any calculation except assignment. That is, a variable can be initialized by

75

Introduction to Programming

a calculation or function returning a value. In short, initialization means assigning a value
to a variable, like this

a = 1.5

s = "This is a string"

Variable Names

In order to use a variable in a program, a variable identifier—a name—is required. In the
early days of computers and programming, back when memory was literally worth more
than its weight in gold, the practice was to use very short names, such as a, b, and c2.
Fortunately, the old limitations on memory have long since vanished. The practice today
is to use variable names that are denotative; that is, the name is an indication of what the
variable contains or is used for.

It also has become a generally accepted practice to create names that include a prefix
identifying the data type. For example, for integer, floating-point, and string variable
types, the prefixes n (for number), f, and s might be used:

nCount = ItemCount(lListOfItems)

fAverage = nTotal / nCount

sFullName = sFirstName : " " : sLastName

Since WinBatch does not require explicit variable declarations and strong typecasting is
not imposed, these indicative prefixes may or may not suit your purposes or practices—
using them is a matter of personal preference. However, a type prefix can be a useful
reminder of what kind of data a variable is intended to contain.

WinBatch variable names are limited to 30 characters in length. Variable names must
begin with a letter and cannot contain any punctuation, spaces, or symbols (except
underscores). Variable names may contain both letters and numbers.

Examples of legal variable names are:
a n nResult MaxIterations sMessage fValue3 Total_Cost

Unacceptable variable names include:
2a 4n2len ThisNameIsSimplyTooLongToBeAccepted

Variable names are not case-sensitive. The following variable names are each considered
to be identical:
maxValue MaxValue maxvalue MaXvAlUe mAxVaLuE mAXvALUE

76

Chapter 4 : Computer Vocabulary – Part I

String Variable Conversion

If a string variable is used in a mathematical operation, WinBatch will attempt to convert
the string variable to an integer or floating-point value, as in this VariTest.wbt example:

n = "2" ; this is a string
m = "2.02" ; also a string representing a floating-point value
a = n * m ; n is converted to an integer and m to a float

In this instance, the conversion can be accomplished because the strings contain only
numbers or, in the case of m, numbers and a decimal point.

However, if the strings contain alphabetic characters or punctuation, a mathematical
operation would result in an error because the strings cannot be converted to numeric
values, as in this example:

n = "two" ; this is a string
m = "two point zero two" ; this is also a string
a = n * m ; we expect this step to fail

We’ll talk more about string operations in Chapter 6.

Substitution

In WinBatch, substitution allows you to insert the contents of a string variable, or of a
numeric variable that can be treated as a string, into a statement before the statement line
is parsed. To use substitution, you simply type the name of the string or numeric variable,
enclosed within a pair of percent signs (%), into the statement where you want the variable
inserted.

To include a single percent sign in a string or numeric variable used in
substitution, enter a double percent sign (%%). The result will appear in the
string as %.

The WIL language has a powerful substitution feature which inserts the contents of a
string variable into a statement before the line is parsed. However, substitution should be
used with caution.

Do not use variable substitution, unless absolutely necessary. Many problems can be
created, simply by using variable substitution. For example, if you have a large string
variable, and you attempt variable substitution, you will receive an error that the line is
too long. This occurs because the contents of the string variable are substituted into the
line before the line gets executed. No single line can exceed 2048 characters.

77

Introduction to Programming

It is a better idea, to build a string variable using the function StrCat or using the colon
string concatenation operator.
MyName = "George"

NewStr = "Hello, My name is: " : MyName

Message("Name Tag", NewStr)

If it is absolutely necessary to substitute the contents of a variable in the statement,
simply put a percent-sign (%) on both sides of the variable name.

mycmd = "DirChange('c:\')" ;set mycmd to a command

%mycmd% ;execute the command

Longer Strings

While WinBatch does have a 2048 character limit on strings appearing in the
source code, you can create longer string within a program by applying a small
trick.

For example, suppose that you have several variables named str1, str2, str3, each
of which contains a long string in the 1000 character range. These three strings
can be joined together – concatenated – using the StrCat function as:

newStr = StrCat(str1, str2, str3)

On the other hand, if you were to try to create newStr using subsitution as:

newStr = "%str1% %str2% %str3%"

… or even …

newStr = StrCat("%str1%", "%str2%", "%str3%")

… these operations would fail with the error "line exceeds more than 2048
characters".

For an analogy to aid memory, think of a variable as being like an envelope
containing a multipage letter. While StrCat can copy the letters into a new
envelope without looking at them, using substitution opens the envelope and
exposes the contents and this is where the violation occurs.

78

Chapter 4 : Computer Vocabulary – Part I

Lists

Lists are string variables containing one or more delimited substrings. The delimiter
character can be a space, comma, or tab character, but only one type of delimiter
character can be used in any list (mixed delimiters are not supported). The primary use of
a list variable is to supply a list of elements for display in a list box. The ListTest.wbt
shows how to create a delimited list and display it to the user:

listFruits = "apple,pear,orange,banana,peach,apricot,plum"

sFruit = AskItemList("Fruits", listFruits, ",", @SORTED, @SINGLE)

Message("The selected fruit is:", sFruit)

Lists also can be parsed and used for other purposes. The variable listFruits, for
example, could also be used very much like an array, except lists are one-based. For
example, to reference the third element from the listFruits list:

sSelect = ItemExtract(n, listFruits, ",")

Here, if n were equal to 3, ItemExtract would return the third item from the list and
sSelect would receive the string assignment “Orange”.

Remember that integer and float variables can also be treated as strings and, therefore,
can be included in lists. Further, since a variable such as a list can contain a virtually
limitless number of entries, lists offer a very convenient method of storing a large group
of values.

Lists are used by several WinBatch functions. The FileItemize function, for example,
returns a tab-delimited list of file names, and the WinItemize function returns a tab-
delimited list containing the names of open windows (applications).

Keywords

Every programming language has certain keywords or reserved words that cannot be used
except for specific purposes. Keywords have meanings and purposes that cannot be
changed, modified, or assigned to new uses. You cannot use these words as variable or
function names.

In WinBatch, the reserved keywords include the names of all functions, commands, and
predefined constants. Examples include the terms Average, About and @TRUE, each of
which is the name of a WinBatch function or predefined constant.

79

Introduction to Programming

80

Summary

Now that you've been introduced to data types, constants, and variables, you should have
some grasp of how data elements are handled in applications. Remember, however, that
we are still introducing the basic vocabulary of programming, and that the types of
manipulation shown thus far barely scratch the surface of our repertory. In this chapter,
you've learned the basic nouns of the language. You are, at this stage, able to point at
something and name it.

In our next step, your vocabulary will be expanded as we introduce operators and
operations. These represent the basic verbs needed to perform actions.

Chapter 5 : Computer Vocabulary – Part II

CHAPTER 5 : COMPUTER VOCABULARY – PART II
SIMPLE VERBS – OPERATORS AND OPERATIONS

“The materials of action are variable but the use we make of them should
be constant.” (Epictetus)

operator \`äp-(ë)-rät-er\ n. 3: a mathematical or logical symbol denoting
an operation to be performed.

operation \`äp-(ë)-rä-shen\ n. 5: any of various mathematical or logical
processes of deriving one expression from others according to a rule.

Operators are the basic verbs of the computer language. Without operators, we would
have no means of instructing our silicon golems to perform even the simplest actions.

In the previous chapters, while introducing the basics of programming, you’ve seen
examples of operators and operations. Here, we will fill in the missing information about
what the operator symbols represent and the operations they perform. A number of the
operators discussed in this chapter are demonstrated in the MathTest.wbt. The opening
dialog for MathTest.wbt appears below:

Each option shown here will demonstrate one or more examples of that type of operation.
After each set of examples completes, the selection will automatically step to the next
operation type.

81

Introduction to Programming

Math Operators

Like other computer languages, WinBatch uses two types of operators:

• A unary operator is one that requires—operates on—only one object (or operand).
• A binary operator is one that operates on two objects.

In some cases, the distinction between unary and binary operators is unimportant; some
operator symbols are used for both unary and binary operations. When the difference
does matter, for the most part, the use of these operators follows common sense and does
not necessarily require esoteric knowledge nor initiation into any secret society, the
swearing of blood oaths, nor the wearing of elaborate headpieces with fur and horns.

Grouping Operators ()

Parentheses are used to group or collect operations and operands, both visually and to
ensure that the evaluation of operands and operators is carried out in a specific order.
Expressions within parentheses are always evaluated first, before the expressions outside
the parentheses are evaluated. For example, here are two formulas, identical except for
the parentheses used to group the operations:

a = 2.5
b = 3.7
c = (a / b) * 4.1
d = a / (b * 4.1)

After these operations are carried out, c and d will not contain the same values. Instead,
the first operation (c) will report a result of 2.77027027, and the second (d) will return
0.164798945.

You can add parentheses even when they are not required. Use them to ensure that
operations are carried out in the proper order or to test results to determine if they are
being performed correctly. For an example of parenthetical grouping, refer to
the MathTest.wbt demo or to the illustration following where two different sets of
parentheses applied to the same figures produce quite different results.

82

Chapter 5 : Computer Vocabulary – Part II

The Assignment Operator (=)

A basic operation is the assignment operation denoted by the equal sign (=). You’ve
already seen this operator repeatedly, in the example above and in previous chapters.
When we say:

nApples = 3

we are assigning a value (3) to the variable nApples. In like fashion, the statement:

sReport = "This is a string"

assigns (copies) a sequence of characters into the memory space indicated by the variable
name sReport.

The assignment operator is also used to store the results of other operations, as in this
example:

fTotal = nItems * fItemCost

Here, the product of an operation—multiplying fItemCost by the number of items
(nItems)—is stored in the variable nTotal.

At this point, you are probably thinking that there is no need to talk anymore about
assignment operations. After all, you learned the operations and the notational format
back in grade school, right? However, for programming purposes, assignment operations
require a bit of additional explanation.

The assignment operator is one of the binary operators because it always requires two
operands: a source operand (on the right of the equation) and a target operand (on the
left). In the first two examples in this section, the source operands are obvious, but they
are not readily apparent in the third example. There, the source operand is not nItems nor
fItemCost. Instead, the source operand is the product (or result) of the operation
expressed on the right of the equation.

For another example, an operation can be performed without the assignment operator, as
in:

nItems * fItemCost

However, in this format, without the assignment operator to store the results of the
operation, the information derived from the action is simply lost. In cases involving
mathematical or logical operations, you can save the result of the calculation using the

83

Introduction to Programming

assignment operator or, optionally, use the result in some other fashion without an
explicit assignment. This latter usage will be discussed later in this chapter, in the
“Precedence and Evaluation Order” section.

In some languages, an operation without an assignment (such as nItems *
nItemCost) would produce an error. In this respect, WinBatch is more forgiving,
but the practical result is still as if the operation had not occurred.

For some operations, such as calls to functions, using the assignment operator to store the
reported result is optional. In such cases, the requested action is carried out whether we
query the result or ignore it.

A Difference in Format

One difference between programming and what you learned in school is the
order in which formulas are written. In school, you were presented with
problems stated as:

5 + 3 = _?_

Here, you were expected to write the answer to the right of the assignment
operator. This convention came about because it suits the convenience of the six
out of seven people who are right-handed.

However, in the world of computer programming, this syntax is reversed. For
computers, the assignment operator functions right to left:

 ? = 5 + 3

Thus, following this format, the variable receiving the result of an assignment
must always precede the assignment operator.

The Addition and Subtraction Operators (+ and –)

The well-known addition (+) and subtraction (–) operators work as you would expect, but
they also have more than one function as operators. Both can be used as either a unary or
binary operator.

As a unary operator—an operator requiring only one operand—the subtraction symbol is
called the arithmetic negation operator. This title simply means that preceding a variable
with the subtraction symbol changes the sign of the quantity stored in the variable. Or,

84

Chapter 5 : Computer Vocabulary – Part II

more accurately, the value in the variable is not itself changed, but any operations
involving the variable use that variable’s negative value. For example, the expression:

fRefund = fItemCost * -nItems

uses the negative of the value in nItems in performing the subsequent calculation. (Of
course, if nItems is already a negative value, the subsequent multiplication operation is
performed using a positive integer.)

As a binary operator—an operator requiring only one operand—the subtraction symbol
functions precisely as you learned in grade school to perform subtraction on both integer
and floating-point values.

Remember that any mathematical operation involving a floating-point value as
any one of the terms will produce a floating-point result. WinBatch’s Int
function can be used to convert a floating-point value to an integer expression
by truncating the fractional portion of the argument.

The plus symbol used as a unary operator is called the identity operator and really doesn't
do anything. For example, the expression:

nTotal = +nItems

is no different than:

nTotal = nItems

As a binary operator, the plus symbol is used to perform addition on integer and floating-
point values.

The demo program SimpleCalculator.wbt shows the results of simple math operations
involving the addition and subtraction operators, as well as the multiplication and
division operators. Below, you can see SimpleCalculator.wbt accepting instructions for a
calculation which then shows the results of the operation in a message box.

85

Introduction to Programming

The Multiplication and Division Operators (* and /)

Like the other operators we have discussed so far, the multiplication (*) and division (/)
operators follow essentially the same rules that you learned in grade school.

The multiplication operator has been shown in a number of previous examples, such as:

fTotal = nItems * fItemCost

If either operand is a floating-point value, the product of the operation will also be a
floating-point value.

In like fashion, the division operator could be used as:

fAverage = fItemCost / nItems

However, division operations are an area where you can easily make mistakes if you
don’t take the “golem principle” – which was introduced back in Chapter 1 – into
account.

When you perform division, sometimes the result should be a fraction. For example,
when you divide three into two parts (3 / 2), you know that the result is one and a half
(1.5 or 1½). But remember that the computer is literal-minded and not very smart. If you
don’t express the operation correctly, to the computer, three divided by two is one, not
one and a half. For examples, look at the following operations:

OPERANDS RESULT NOTES

2 / 3 = 0 integer / integer = integer

3 / 2 = 1 integer / integer = integer

3.0 / 2 = 1.5 float / integer = float

2 / 3.0 = 0.66666667 integer / float = float

2.0 / 3.0 = 0.66666667 float / float = float

6.0 / 3.0 = 2.0 float / float = float

As you can see, if both operands are integers, the result is an integer, even if this means
the value of the operation is truncated.
To solve this problem, you need to convert either the dividend or the divisor to a floating-
point value to ensure that the product of the operation will be a float.

For example, to change the dividend temporarily from an integer to a float, the code
could be written like this:

86

Chapter 5 : Computer Vocabulary – Part II

fResult = (nDividend * 1.0) / nDivisor

The result of the operation will appear as a floating-point value, but with both the
operands unchanged.

The Modulus Operator (mod)

The modulus operator (mod) performs remainder division; that is, the product of modulus
division is the remainder following integer division. Here are two examples:

6 mod 3 = 0

7 mod 3 = 1

Because 3 divides into 6 evenly (twice) there is no remainder, and the modulus operation
returns 0 (zero) as a result. But for 7 divided by 3, using integer (modulus) division, a
remainder of 1 is returned.

The term integer division refers to the fact that the divisor is subtracted from the
dividend an integer number of times until the remainder is less than the divisor.
This remainder becomes the product of modulus division.

Modulus division can be performed on floating-point values as well as integers, thus:
7.53 mod 3.1 = 1.33

One convenient use for modulus division is to extract the fractional portion of a floating-
point value. This can be accomplished as:
7.53 mod 1 = 0.53

An alternative approach would be to use the Int function to find the integer portion of a
floating-point value and then subtract this from the floating-point value.

The Exponential Operator (**)

The exponential, or power, operator (**) raises the first operand to the power of the
second (for x ** n, x is multiplied by itself n times). Here are two examples:

fResult = 2 ** 3 ; (2 * 2 * 2 or 2 3 = 8)

fResult = 3 ** 2 ; (3 * 3 or 3 2 = 9)

The exponential operator is not limited to integer values. It is perfectly valid to write:

fResult = 2.5 ** 3 ; (2.5 3 = 15.625)

87

Introduction to Programming

fResult = 2.5 ** 3.9 ; (2.5 3.9 = 35.64232565)

In like fashion, either operand can be a negative value:

fResult = -2.5 ** 3 ; (–2.5 3 = -15.625)

fResult = 2.5 ** -3 ; (2.5 –3 = 0.064)

The exponential operator is particularly useful for engineering and scientific applications.

Logical Operators

Logical operators return a result of TRUE or FALSE where TRUE is nominally one (1 or non-
zero) and FALSE is always zero (0).

	 In any Boolean (logical) operation, any non-zero value is recognized as
TRUE. Thus TRUE can be –5, -1.5, 1, 2.7, 1234 or any value except zero.

The logical operators consist of logical AND (&&), logical OR (||), and logical NOT (!).
The AND and OR operators are binary. The NOT operator is unary (it affects only one
operand). The logical operators are used extensively by programmers to combine tests to
make decisions (a topic discussed in Chapter 8).

Caution: Binary logical operators can be used only for integer variables. Do not
apply these operators to floating-point values or strings.

The Logical AND Operator (&&)
The logical AND operator requires that both operands (arguments) be TRUE before a TRUE
result is returned. Here is an example:

if (a > b) && (c < d) ...

In this example, the if condition will be satisfied only if both arguments—a is greater
than b (a > b) and c is less than d (c < d)—are found to be true. If either (or both)
arguments is not true, a FALSE result will be returned. The greater-than (>) and less-than
(<) operators used in this example are discussed later in this chapter.

The Logical OR Operator (||)
Like the logical AND operator, the logical OR operator tests two operands, or arguments.
The difference is that the OR operator returns TRUE if either operand tests TRUE. Here is an
example:

88

Chapter 5 : Computer Vocabulary – Part II

if (a > b) || (c < d) ...

In this case, the if condition is satisfied when either (a > b) or (c < d) is found to
be true. A FALSE result will be reported only if both arguments are not true.

The Logical NOT Operator (!)
The unary logical NOT operator returns a 0 (@FALSE) if the operand is nonzero (or TRUE)
and returns 1 (@TRUE) if the operand is initially 0 (or FALSE).

The @ (at-sign) character is used in WinBatch to identify pre-defined
constants. Thus, @true is the same as 1 and @false is the equivalent of 0
– refer to Predefined Constants in Chapter 4.

Here is an example:

If ! (a == b) then...

If a and b were equal or identical (a == b), the operand term within the parentheses
would be TRUE, but using the NOT operator reverses the result to be evaluated as FALSE,
and the condition would not be met. If a and b were unequal, the test would evaluate as
TRUE, and the condition would be met. The equality operator (==) used in this example is
discussed in the next section.

The statement ! (a == b) could equally well be written a != b. The
present construction is used simply to illustrate the not operator (!).

Relational Operators

Relational operators are used to test relationships and to determine if two items are equal
(==) or unequal (!= or <>) or if one item is greater than (>), greater than or equal to (>=),
less than (<), or less than or equal to (<=) another item. Relational operators are always
binary, since a relationship requires two elements to be related in some fashion.

The equality and inequality operators apply to numeric operands as well as strings. The
remaining relational operators apply only to numeric operands (integers or floating-point
values).

The Equality and Inequality Operators (== and != or <>)
The equality operator returns a TRUE result if the two operands are equal or identical.
Otherwise, it returns FALSE. The equality operator can be applied to all data types,
including strings. When you use this operator with strings, remember that strings are
treated as case-sensitive. Consider this example:

89

Introduction to Programming

s1 = "ThIs Is A sTrInG"
s2 = "this is a string"
if(s1 == s2)...

Here, the test will confirm inequality because one string has mixed caps and the other is
lowercase.

The inequality operator returns TRUE if the two operands are not equal or not identical
and returns FALSE if they are. Like an equality test, an inequality test can also be applied
to strings. Changing the last line in the example above to:

if(s1 <> s2)...

or

if(s1 != s2)...

returns a TRUE result.

The Greater-Than and Less-Than Operators (>, >=, <, and <=)
The greater-than and less-than operators work with numeric operands, as follows:

• The greater-than (>) operator reports TRUE if the left operand is larger than the one
on the right.

• The greater-than-or-equal (>=) operand reports TRUE if the left operand is larger
than the one on the right or if the two are equal.

• The less-than (<) reports TRUE if the left operand is smaller than the one on the
right.

• The less-than-or-equal (<=) operators reports TRUE if the left operand is smaller
than the one on the right or if the two are equal.

For example:

2 > 3 = @FALSE obviously 2 is less than 3 so the result would be 0 or
 FALSE

3 > 2 = @TRUE since 3 is greater than 2, the result would be 1 or TRUE

3 >= 3 = @TRUE since the two values are equal, the result is TRUE

Bitwise Operators

Bitwise operators are used to manipulate the series of ones and zeros that the computer
employs to represent all types of data. Bitwise operations are normally applied only to
integer values. In practice, bitwise operations (and thus, bitwise operators) are rarely used
directly by high-level programmers.

90

Chapter 5 : Computer Vocabulary – Part II

Six bitwise operators are provided by WinBatch: the left-shift (<<), right-shift (>>),
bitwise AND (&), bitwise OR (|), bitwise XOR or eXclusive OR (^), and bitwise NOT
(~). All of these, except the bitwise NOT operator, are binary operators.

Words and Bits

In computer terms, a bit is the smallest unit of memory and can store either a 1
or a 0. Since bits are rather small, we find it more convenient to talk about words
where a word is the computer’s natural unit of storage. The size of a word can
differ depending on the operating system and the language but, for our purposes,
we can consider a word as being 32 bits in size.

When we perform bitwise operations, we are manipulating the individual bits
within word values. While we will offer illustrations of bitwise operations –
following – these will not be discussed in depth. Bitwise binary operations are
best left to experienced programmers who, presumably, are familiar with binary
and hexadecimal representation and the reasons and purposes for low-level
manipulation of values.

Binary Numbers

A binary number is simply a notational format that matches the form in which
numbers are stored in the computer – that is: in 1’s and 0’s. For example, the
value 121 in decimal notation is 1 in the one’s column, 2 in the ten’s column and
1 in the hundred’s column.

In binary notation, the information consists of only 1’s or 0’s whose value
depends on the column position. But, instead of a one’s column, a ten’s column
and a hundred’s column, the columns are 1, 2, 4, 8, 16, 32, 64, etc., proceeding
by powers of 2 (hence binary).

As examples:

 1 = 0000 0001

 2 = 0000 0010

 3 = 0000 0011 (2 + 1)

 5 = 0000 0101 (4 + 1)

 121 = 0111 1001 (64 + 32 + 16 + 8 + 1)

(For convenience, binary numbers are often written in groups of four.)

91

Introduction to Programming

Binary numbers can also be used as flags where each position in a number –
each bit – is a separate True/False flag (1=True, 0=False). That is, the number as
a whole has no meaning but each flag (bit) can control some completely
unrelated element.

As an example, suppose that we want to record whether each of a series of items
are a) solid [0] or hollow [1], b) red [0] or green [1], c) soft [0] or hard [1], d)
wet [0] or dry [1], e) light [0] or dark [1], f) fuzzy [0] or smooth [1] and g)
vegetable [0] or mineral [1].

Now, assume that we have an item which is hollow [1], red [0], hard [1], wet
[0], dark [1], smooth [1] and vegetable [0].

Instead of storing seven different facts about this item, we can store all of this
information in a single value as:

 hgfe dcba (the least significant bit comes last)

 0011 0101 (binary) = 32 + 16 + 4 + 1 = 53 (decimal)

Later, to find out if an item is smooth, for example, we can simply test the value
stored in the flag variable by ANDing it with the value for smooth, thus:

 nSmooth = 32

 if nFlag & nSmooth then …

In binary terms:

 0010 0000 (nSmooth)

 & 0011 0101 (nFlag)

 = 0010 0000 since the result is not zero (TRUE) , the item is smooth.
Alternately, if the result had been zero, the item would have been identified as
fuzzy – see Bitwise AND, OR and XOR Operators.

The Left-Shift and Right-Shift Operators (<< and >>)
The left-shift and right-shift operators are used to shift an integer value's bits to the left or
right a specified number of places. A shift operation manipulates the bits making up an
integer value. Here is an example that uses the left-shift operator:

n = 9
nResult = n << 2

92

Chapter 5 : Computer Vocabulary – Part II

This produces a result of 36, just as if n had been multiplied by 4.

For an integer value of 9, the binary representation (the ones and zeros) would be:

 0000 0000 0000 1001

Shifting this value left two places produces:

 0000 0000 0010 0100

which, in decimal format, is 36.

When a left-shift operation occurs, the n leftmost bits are lost and n zeros are added to the
right. Likewise, for a right-shift operation, the n rightmost bits are lost and the value is
left-padded with zeros.

The MathTest.wbt demo (see Appendix A) includes two examples of bitwise
shift operations.

The Bitwise AND, OR, and XOR Operators (&, |, and ^)
The bitwise AND operator combines to values to produce a result where the bits set are
those that appear in both operands. Here is an example:

 1001 0001 (145)
 0000 1001 (& 9)
 0000 0001 (= 1)

The bitwise OR operator also combines values, but the result is a value where the bits set
are those that appear in either operand, as in this example:

 1001 0001 (145)
 0000 1001 (| 9)
 1001 1001 (= 153)

The bitwise XOR operator, also known as the eXclusive OR, combines values but
produces a result where the bits set are those that appear in either but not both operands,
as in this example:

 1001 0001 (145)
 0000 1001 (^ 9)
 1001 1000 (= 152)

93

Introduction to Programming

The Bitwise NOT Operator (~)
The bitwise NOT operator is a unary operator. The NOT operator inverts the bits in the
single operand it is applied to. Here is an example:

 1001 1001 (= 153)
 ~1001 1001 becomes 0110 0110 (= 102)

The operand that is the object of the bitwise NOT is not actually changed by the
operation; however, the way in which the operand is evaluated is changed.

Precedence and Evaluation Order

The order in which operations are performed can drastically affect the results, as
demonstrated earlier in the chapter, in the “Grouping Operators” section. The order of
operation performance is governed by precedence.

The precedence of the operators affects the evaluation of operands in expressions.
Operands associated with higher-precedence operators are evaluated before the lower-
precedence operators. The table below shows the precedence of the operators. Where
operators have the same precedence, they are evaluated from left to right.

Operators and Precedence

Operator Description

() Parenthetical grouping

& * Unary pointer operators

~ ! – + Unary operators

** Exponential (power of) operator

* / mod Multiplication and division operators

+ – Addition and subtraction operators

<< >> Shift operators

: Concatenation

< <= == >= > != <> Relational operators

& ^ | Bit-manipulation operators

&& || Logical operators

= Assignment operator

94

Chapter 5 : Computer Vocabulary – Part II

There is another circumstance where precedence comes into play. When we write a
statement as:

 c = (a / b) * 4.1

…or…

 d = a / (b * 4.1)

…we automatically assume that all of the operations to the right of the assignment
operator (=) are performed before the assignment is made to the variable on the left.
Rather obviously, this is also true when an assignment is made to copy the results
returned by a function to a variable – that is, the function performs all of its operations
before the assignment operation is handled.

There are circumstances, however, when we may not choose to use explicit assignments
– that is, we may not wish to assign the results of an operation to a variable – but, instead
will simply use the results of a calculation, operation or a function call directly in another
operation. For example, if we wanted a random percentage, we could begin by calling the
random function as:

n = Random(100)

; returns a value between 0 and 100

nPercent = n / 100

Here, we’ve assigned the result returned by the random function to the variable n and then
used n in a further calculation. We could simplify this operation, however, and omit the
variable n entirely by writing this instruction as:

nPercent = Random(100) / 100

In this example, the value returned by the random function is not assigned to any variable
but is simply used as a value in the next stage of the calculation. The order of precedence
in this statement is simple: the random function takes the highest precedence and is carried
out first, the division operation (/) is evaluated next and the assignment operation (=)
occurs last.

When several functions appear in a statement, the order of precedence begins at the left,
proceeding to the right. For example, take the following statement which uses three
theoretical functions:

nResult = (function1(a) * function2(b, c)) / function3(d)

95

Introduction to Programming

Here function1 and function2 would be evaluated in left to right order but the next step
would be to evaluate the product of the results returned by function1 and function2.
Only after this was done – as directed by the parentheses – would function3 be
evaluated. Only then would the product of function1 times function2 would be divided
by the value returned by function3 before, last, the results would be assigned to nResult.

Note that the order of operations follows the same logical sequence which you learned in
grade school – a circumstance which does not occur by accident. After all, this is a high
level language intended for use – and understanding – by humans which makes it quite
logical to have the order follow a human standard.

Comments

Strictly speaking, a program comment is a non-operator. A comment is a note or
observation included for the benefit of the person who wrote the program or for other
programmers.

A comment is denoted by a semicolon (;) which precedes the text of the comment.
Everything following the comment mark (to the right of the semicolon) is ignored when
the program is executed or compiled.

Here are some examples of comments:

; this line is a comment and will be ignored

nItems = 25 ; and this is also a comment

fPrice = 1.25

fTotal = nItems * fPrice ; and a third comment

Note that any blank lines in the application code are also ignored.

Unary Operators (Variable Reference Operators)

Two unary reference operators – the ampersand & and the asterisk * – are used to refer to
or reference a variable. For example:

pIndex = &Index ;creates a pointer to the variable Index

and

*pIndex ;references (connects with) Index via the pointer.

96

Chapter 5 : Computer Vocabulary – Part II

Thus, arrayVar[Index] is the same as arrayVar[*pIndex] while the actual value of Index
may be defined or modified somewhere else in the program. In effect, the unary
operators function like a phone number; the phone number is the reference to someone
somewhere else and can be used to make a connection to them without having to travel to
meet them and without the remote party having to interrupt their own business.

Binary String Operations

There is also one binary string operator – the colon : – which is a concatenation operator.
In effect, the concatenation operator joins two strings together. For example the
instructions:

sFirst = "Mary had"

sSecond = "a little lamb"

sFinal = sFirst : sSecond

gives us a sFinal which now reads "Mary had a little lamb".

Summary

The operators described here are the basic verbs of computer programming. They
represent the simplest actions that can be carried out by an application. Combined with
the simple nouns (variables and constants) you learned in the previous chapter, you now
have the vocabulary to tell the computer how you want basic operations performed and
how to perform simple tests.

Now we can move onto operations that are a bit more complex. In the next chapter, we'll
deal more extensively with string operations. In Chapter 7, we'll dip into the
programmer's toolbox and begin working with functions that supplement, extend, and
complement the basic tools covered thus far.

As mentioned at the beginning of this chapter, many of the operators discussed here are
demonstrated in the MathTest.wbt demo. At this point, you may want to spend a few
minutes first playing with the demo and then altering it to observe new results.

97

Introduction to Programming

98

Chapter 6 : Computer Vocabulary – Part III

CHAPTER 6 : COMPUTER VOCABULARY – PART III
STRINGS AND TEXT OPERATIONS

"… men ought not to investigate things from words but words from things; for
that things are not made for the sake of words, but words for things." (Diogenes
Laertius, Myson)

"…where a neat rivulet of text shall meander through a meadow of margin."
(Richard Brinsley Sheridan, St. Patrick’s Day)

Strings were introduced in Chapter 4 as one of the basic data types. Until we have voice
synthesis (and holograms and a few other fancies), strings (text) are how we
communicate with the people using our applications, and you can’t get much more basic
than that.

Granted, voice synthesis is a reality and not some future dream. However, it is still not a
commonplace device for computer communications. And, if it does come into common
use, we strongly suspect that strings will still be used, even if only to tell the "voices"
what to say.

In this chapter, we explore how we can manipulate this type of data so that our
applications can both understand (in a limited sense) the strings entered by users and
present other strings as information.

Although extensive string functions are provided in WinBatch, these functions
are relatively slow while the Array functions can be much faster.

String-Manipulation Functions

As mentioned in a previous chapter, WinBatch does not entirely differentiate between
strings and numbers. A string containing only numeric characters can be treated as if it
were an integer or a floating-point value. Likewise, when reporting the results of various
mathematical operations, integers and floating-point values are treated as if they were
strings. (Note that this free and easy transmogrification between data types is not
common; most computer languages require explicit conversions from numerical to
textual representation.)

In addition to providing essentially automatic conversions—with some limits— between
the basic data types, WinBatch also offers an excellent variety of string-manipulation
functions. String functions can be thought of as falling into two categories: auxiliary
functions and specialized functions.

The auxiliary string functions provide support for routine string operations, such as
concatenating two strings into a single string (StrCat), finding the length of a string

99

Introduction to Programming

(StrLen), and performing a comparison between two strings (StrCmp). These auxiliary
string functions are similar to those found in most languages and can be used to create
more complex string functions.

Some languages such as Visual Basic have permitted the addition operator (+) to
concatenate strings, as:

sReport = "Your name is " + sName.

WinBatch does not permit the addition operator for strings but does provide the
concatenation operator (:) thus:

sReport = "Your name is " : sName.

Alternately, you can use the StrCat function to perform concatenation.

The specialized string functions perform very specific string tasks, giving the
programmer the ability to quickly build complex and useful text-processing utilities.
Examples of specialized string functions include SubStr, which extracts a portion of a
string; StrScan and ParseData, which count the words in a string; and StrReplace, which
searches a string for occurrences of a substring and replaces them.

Most of the string-manipulation functions are easily identified by the Str prefix in the
function name.

String-Parsing Operations

In many cases, WinBatch applications are called with parameter arguments, as in the
following cases:

• An application to perform operations on several files might be called with a list of
files to be used. The files listed are parameters.

• An application might be called with parameters that provide instructions for what
types of tasks should be performed.

• A single parameter might refer to a file that contains a further list of instructions
(parameters).

In any of these cases, the immediate problem the application must solve is to separate
these parameters into individual arguments.

For example, suppose our application is reading a text file that contains a series of
instructions. The text file identifies other applications that we want to execute and also
specifies arguments to either be passed to these applications or used within the main
application for other purposes. The following sections describe four alternative ways to

100

Chapter 6 : Computer Vocabulary – Part III

handle this. In the examples, the file containing the instructions is named SearchList.txt,
and it consists of three lines:

MyApp1 Apples Oranges Pears
MyApp2 23 456.4 93.0 128.6 93.2 35.6 87.456 7.65
MyApp3 %n1% %n2% %n3%

The sample programs in Appendix A-SearchTest.wbt, SearchTest2.wbt, SearchTest3.wbt
and SearchTest4.wbt-demonstrate using the ParseData function, a combination of the
StrScan and StrSub functions, a combination of the ItemCount and ItemExtract functions
and the ArrayFileGet function.

The ParseData Function
The SearchTest.wbt demonstrates using the ParseData function. As SearchTest.wbt reads
each line of the SearchList.txt file (contents shown above), the ParseData function
performs two tasks. First, ParseData counts the number of individual words in the line by
looking for the spaces separating the words. Second, ParseData assigns each of the words
found to a series of string variables named param1, param2, and so on. The number of
arguments returned by ParseData is also stored in a variable named param0.

In the SearchTest.wbt example, the ParseData function is called as:

nCmds = ParseData(Line)

Here, nCmds receives the command count returned by ParseData, but the assignment of
the substrings found to the parameter variables is automatic.

Once these elements have been separated, they could be used for a variety of purposes.
MyApp1 could use the parsed string to launch other applications with command-line
arguments (arguments that are passed when an application is called from the command
line, using the Run command on the Start menu, or from other applications). In the case
of MyApp2, the arguments might be treated to some form of numerical process. MyApp3
might substitute other variables for the arguments. In this case, however, the parsed string
is simply reported as the number of arguments and a list:

The ParseData function is useful for parsing strings, but it has a few limitations:

101

Introduction to Programming

• These arguments are automatically assigned to a series of predefined variables.
• The only delimiter allowed to identify words is the space character.

If the SearchTest.wbt demo had itself been called with a series of arguments, these
arguments would have been in the param_x variables and would have been overwritten,
unless they had been saved under new names, when the first line was read from the file.

In short, the ParseData function is useful, but it is also rather specialized. There are more
flexible ways of breaking string data into substrings, as described in the following
sections.

The ParseData function is primarily intended to handle command-line
parameters. However, in WinBatch, when an application is called with
command-line arguments, once the application starts, these arguments are
already present as the variables param1 through paramN. Similarly, the variable
param0 contains an integer value reporting the number of arguments provided.

The StrScan and StrSub Functions
As an alternative to using the ParseData function, you can use a combination of the
StrScan and StrSub functions. The StrScan function can find any of several delimiters
(your choice), and the StrSub function can extract a substring.

The SearchTest2.wbt demo uses the StrScan and StrSub functions to parse the data in the
sample SearchList.txt file. To begin, we need to set a starting point (which should not be
zero), to set the count to zero, and to set a flag, named bDone, to false:

nPos1 = 1 ; set starting point

nCmds = 0 ; zero the count

bDone = @FALSE ;and set an end flag

With this done, we can start a loop to look for delimiters in the string read from the file
(loops are explained in Chapter 8):

While @TRUE

 nPos2 = StrScan(Line, ',: ', nPos1, @FWDSCAN) ;checking for three
characters

When we call StrScan, we’re supplying several pieces of information:

• The string to be searched
• The delimiters to find, which are a comma, a colon, and a space (finding any of

these three characters will satisfy the search) in this example

102

Chapter 6 : Computer Vocabulary – Part III

• The position in the string where the search should begin, which is the first
character in the string in this example

• The predefined constant @fwdscan, which tells StrScan to search from the first to
the last (@backscan would reverse the search direction)

In WinBatch, using a start position of zero (0) in any search has a special
meaning. For a forward search (@FWDSCAN), zero initiates the search at the
beginning of the string. For a reverse search (@BACKSCAN), an argument of zero
initiates the search at the end of the string. However, in both cases, the position
reported will be the position from the start of the string.

Next, we check the results of the search. If we’ve hit the end of the line—that is, there are
no delimiters remaining to be found—the value returned to nPos2 will be zero. If we have
come to the end of the line, we don’t want to forget the last word (or phrase) in the string.
We set nPos2 to point to the end, and we also set a flag, bDone, to indicate that we’re
finished searching:

 If(nPos2 == 0) ; we've hit the end of the line

 nPos2 = StrLen(line) + 1 ; find end of line

 bDone = @TRUE ; and set an end flag

 Endif

Next, once we’ve actually found a position—either a delimiter or the end of the string—
we can increment nCmds. Now that we have both a start and an end position, we can
extract the substring from Line. However, since the StrSub function doesn’t want an end
point but only a start point and a length, the final argument passed to StrSub is a length
derived from the two points:

 nCmds = nCmds + 1

 param%nCmds% = StrSub(line, nPos1, nPos2 – nPos1)

Also, nCmds is used, as param%nCmds%, to copy each substring to a different element in a
variable. Note that the paramxxx variable name was used here simply to match the format
demonstrated in SearchTest.wbt; we could have used any variable name.

The next step is to update our first search position, nPos1, to one position past nPos2. If
we started the next loop at the position where the last delimiter was found, the program
would find the same match over and over again, creating an infinite loop (another
example of the mindless golem principle in action).

 nPos1 = nPos2 + 1 ; set a new starting point

 If bDone == @TRUE then Break ; reached end, exit loop

103

Introduction to Programming

EndWhile

Finally, if the bDone flag has been set, then we need to break out of the while loop and let
the rest of the program proceed identically to the SearchTest.wbt demo.

Feel free to try this on your own and see what happens if you don’t update the
first search position to past where the last search item was found. In this specific
situation, the loop will abort when the number of new variables is exhausted …
somewhere in the larger numbers or when memory is exhausted. Do not,
however, count on such a convenient "out" from infinitely repeating loops.

The SearchTest2.wbt demo is more flexible than the SearchTest.wbt example for two
reasons:

• It accepts a variety of delimiters.
• It allows us to assign the substrings located to whatever variables we choose, not

simply to the predefined paramx variable series.

The ItemCount and ItemExtract Functions
The SearchTest3.wbt demo demonstrates using the ItemCount and ItemExtract functions
to parse a string. The advantage of this approach is that it takes fewer lines of code.
The SearchTest3.wbt program requires only four lines of code to accomplish the same
task that required fourteen lines in the SearchTest2.wbt demo.

In this example, the first instruction uses ItemCount and the space character as a delimiter.
It searches the string to return the number of individual substrings found. Then, once the
number of items is known, the ItemExtract function, using the same delimiter, is called
within a loop to return each of the substrings individually:

 nCmds = ItemCount(line, " ") ; get the number of commands

 For i = 1 to nCmds

 param%i% = ItemExtract(i, line, " ") ; extract each substring

 Next

The end result is precisely the same as what is accomplished by the SearchTest.wbt
and SearchTest2.wbt programs. High-level functions such as ItemCount and ItemExtract
can perform relatively complex tasks with very brief instructions. However, lower-level
functions such as StrScan and StrSub offer greater flexibility and can be used to perform
custom tasks not supported by higher-level functions.

Using the ArrayFileGet function
The SearchTest4.wbt program performs the same task but copies the text file into an
array using the ArrayFileGet function which returns each line of the file as an array
element. If you examine the code, you should notice how brief this code is when
compared to the previous examples.

104

Chapter 6 : Computer Vocabulary – Part III

Of course, in this example, instead of parsing each line for individual words, the array
retrieval allows us to simply display the retrieved line without breaking down the
individual parameters.

Differences in the String-Parsing Techniques

There are several differences in the string-parsing techniques demonstrated in the four
examples:

• SearchTest.wbt, which uses ParseData, is limited to a maximum of nine items. All
the others can parse any number of substrings (or list or other items) and can
assign these to any variables desired.

• The only delimiter allowed in SearchTest.wbt is the space character. The rest can
use any delimiter desired. SearchTest2.wbt has the extra advantage of allowing a
mixed list of delimiters, not merely a single delimiter character; when multiple
delimiters are provided, any one of these can indicate a break between items.

• Comparing SearchTest2.wbt and SearchTest3.wbt, the latter is most notable for
the brevity of the code required. (SearchTest.wbt and SearchTest3.wbt are
approximately the same size although the former is less sophisticated
functionally.)

• The process demonstrated in SearchTest2.wbt can be modified to serve a variety
of different tasks as well as supporting a variety of different tests. This flexibility
is not supported by the ItemCount and ItemExtract functions demonstrated
in SearchTest3.wbt.

• SearchTest4.wbt is the briefest and quickest operating code sample. Arrays are
recommended when dealing with very large data sets.

Search-and-Replace Operations

Locating strings and finding strings and replacing them with other strings are common
operations. The WinBatch functions that support these types of operations include
StrIndex, StrIndexNc, and StrReplace.

The StrIndex and StrIndexNc Functions
You can use the StrIndex or StrIndexNc function to find matching strings. Unlike the
StrScan function (discussed earlier in the chapter), which searches for one character or
any one character in a set of characters, the StrIndex function searches only for an entire
and complete substring.

For example, consider this code:

sSample = "The quick red fox jumped over the lazy brown dog"

nPos = StrIndex(sSample, "brown dog", 1, @FWDSCAN)

105

Introduction to Programming

In this example, StrIndex will return a value of 40, reporting that the substring "brown
dog" was located beginning with the fortieth character in the string.

The StrIndex and StrIndexNc functions are called with the same arguments and operate
in essentially the same fashion, with one significant difference: StrIndex searches for an
exact match of uppercase and lowercase characters, but StrIndexNc is not case-sensitive.
For example, if the sample string were searched for the substring "Brown Dog" rather than
"brown dog", like this:

nPos = StrIndex(sSample, "Brown Dog", 1, @FWDSCAN)

the value returned to nPos would be 0, since no match would be found. However, if the
search were performed using StrIndexNc, like this:

nPos = StrIndexNc(sSample, "Brown Dog", 1, @FWDSCAN)

nPos would contain a match position, because it ignores the differences between
uppercase and lowercase characters.

Quite often, however, we’re interested in locating all occurrences of the substring, not
just one instance. For this purpose, we can use a while loop, StrIndex.wbt:

sSample = "The quick red fox jumped over the lazy brown dog"

sTarget = "brown dog"

nPos = 0

While @TRUE

 nPos = StrIndex(sSample, sTarget, nPos, @FWDSCAN)

 If nPos == 0 Then Break ; time to quit

 Pause("Found at position", nPos)

 nPos = nPos + 1 ; start one place further

EndWhile

exit

Here, the search begins at the first of the sSample string and then repeats each time,
searching from one position further than the previous match. This one position offset is
necessary to avoid an infinite loop; otherwise, the same match would simply be found
over and over again, ad infinitum.

In WinBatch, a list is really not very different from a string and can be searched in much
the same fashion as a string. For example, if we wanted to find all items in a list that
contained the word blue, we could use the search routine shown in this section by
incrementing a counter for each match. However, actually extracting each entry that

106

Chapter 6 : Computer Vocabulary – Part III

contains a match requires a little more sophistication. A suitable technique will be
illustrated later in this chapter, when we discuss lists in more detail.

The StrReplace Function
Once the StrIndex or StrIndexNc function has been called to find an occurrence of a
substring, the next step might be to replace the target (found) string with a new string. If
we want to replace all occurrences of the target string without reservation, using the
StrReplace function is straightforward. StrReplace is called as:

sStringRevised = StrReplace(sString, sOld, sNew)

And that’s it—no fuss, no muss, no decisions, and no complications. All occurrences of
the old substring are located and replaced by the new substring.

However, if we want to do something a little more sophisticated, such as deciding which
occurrences to replace and which to leave alone, then we need to be a little trickier.

Selective Search and Replace
The SearchReplace.wbt program demonstrates a selective search-and-replace operation.
The program reads from a text file (Blake.txt) containing an excerpt from Blake’s The
Smile, where one word is repeated four times in three lines. To show that the replacement
is selective rather than global, as would happen using the StrReplace function, we change
only the first and third occurrences of the string, leaving the second and fourth as they are
in the original.

A simple text box displays the original file and then, following the search and replace
operation, the text box shows the altered text. Both the before and after versions are
shown in the following dialog.

107

Introduction to Programming

We begin by defining a target and a replacement string, getting the length of the target
string (using StrLen) and, since we’re going to alternate replacements, setting a counter:

sTarget = "frown"

sReplace = "smile"

nLen = StrLen(sTarget)

nCount = 1

The heart of the operation begins using StrIndexNc to search for a single occurrence of
the target string.

nPos = StrIndexNc(sLineIn, sTarget, nPos, @FWDSCAN)

If nPos == 0 Then Break ; that’s it, jump to next line

If nCount mod 2 == 1

If no match is found, then the break statement jumps out of the while loop so that we can
proceed with the next line. Otherwise, we continue the loop as long as any occurrence of
the target remains to be found. The nCount mod 2 test is provided to alternate whether the
target is replaced or skipped.

108

Chapter 6 : Computer Vocabulary – Part III

We have start position for the target. The replacement operation begins by getting a
second position (nPos2) for the end of the string and getting a length (nLen2) for the string
remaining after the end of the target substring.

 nPos2 = nPos + nLen

 nLen2 = StrLen(sLineIn) - nPos2 + 1

 sTemp1 = StrSub(sLineIn, 1, nPos-1)

Next, we use StrSub to copy the first part of the line—however much there is—into the
variable sTemp1. This gives us everything preceding the target substring. Then we use
StrSub again to copy everything following the target substring into a second variable,
sTemp2.

 sTemp2 = StrSub(sLineIn, nPos2, nLen2)

Now that we have the first part of the string and the last, but not the original search target,
we can use StrCat to reassemble a new string with the replacement string (sReplace) in
the position previously occupied by the search target:

 sLineOut = StrCat(sTemp1, sReplace, sTemp2)
 Endif

We’ve selectively replaced a single occurrence of the target string without replacing all
occurrences. But we’re still inside a while loop, and the search isn’t finished. We
increment the counter used for alternations. Then the important next step is to increment
the initial search position so that the search can continue for the next match.

 nCount = nCount + 1
 nPos = nPos + 1 ; start the next search one place further
 EndWhile

Granted, this process is not as easy as using the StrReplace function, but unlike
StrReplace, it is selective and allows replacement of a specific substring. Most important,
this search-and-replace operation could be used for any substring, containing one or more
words and using any delimiter we choose.

As program routines go, this one is actually quite simple and relatively brief. It is also
flexible and customizable.

String-Conversion Operations

In addition to the automatic conversions allowing strings to be treated as numeric values
and vice versa, WinBatch provides a pair of conversion functions:

109

Introduction to Programming

• StrLower converts a string to all lowercase letters.
• StrUpper converts a string to all uppercase letters.

For example, using StrLower, the following example changes all uppercase characters in
the string to lowercase:

sTemp = StrLower("ThIs StRiNg WaS MiXeD cAsE")

The result is sTemp rendered as "this string was mixed case".

Using StrUpper, like this:

sTemp = StrUpper("ThIs StRiNg WaS MiXeD cAsE")

yields "THIS STRING WAS MIXED CASE".

Initially, you may think that these sound like trivial functions, but there are occasions
when a difference in case would be inconvenient or erroneous. In these situations, we can
simply convert strings to full uppercase or full lowercase before performing any
operations. This is a common requirement when making comparisons between strings, as
described in the next section.

Other String Conversions

To handle international text displays (international alphabets) the Unicode alphabets offer
a very wide variety of text fonts and provides access to these by setting code pages for
each alphabet. To support these, WIL provides a comprehensive set of conversion
functions as:

• ChrHexToString(hex-string) converts a hex string to a string.
• ChrHexToUnicode(hex-string) converts a hex string to a Unicode string.
• ChrSetCodePage (code-page) sets the current WIL code page.
• ChrStringToHex(string) converts a string to a Hex string.
• ChrStringToUnicode(string) converts an ANSI string to a Unicode string.
• ChrUnicodeToHex(Unicode-string) converts a Unicode string to a Hex string.
• ChrUnicodeToString(Unicode-string) converts a Unicode string to an ANSI

string.

You may, of course, use the standard English/American alphabet without needing access
to any of these conversion options. But, if you need Thai or Bengali or N’Ko … well,
it’s a wide, wide world out there.

110

Chapter 6 : Computer Vocabulary – Part III

String-Comparison Operations

For string comparisons, WinBatch provides the StrCmp function, which performs a case-
insensitive string comparison. The StrCmp.wbt program demonstrates how StrCmp works,
as shown below:

If the two strings were compared strictly according to the ASCII values of the characters,
the lowercase string would always be less than the uppercase string, even if they were
otherwise identical. Therefore, we can assume that the StrCmp function has performed a
case conversion on both string arguments before performing a comparison. (Whether
these strings were converted to uppercase or to lowercase is immaterial, because the
result would be the same as long as they are both in the same case.)

The code used in the StrCmp.wbt demo is fairly simple:

 nResult = StrCmp(sTemp1, sTemp2)

 Select nResult

 case -1 ; less than

 sResult = " is less than "

 break

 case 0 ; equal

 sResult = " is equal to "

 break

 case 1 ; greater than

 sResult = " is greater than "

 break

 EndSelect

 sReport = '"' : sTemp1 : '"' : sResult: '"' : sTemp2 : '"'

StrCmp returns a –1 if the first argument is less than the second, a 0 (zero) if they are
equal, or a 1 if the first is greater than the second.

111

Introduction to Programming

Unlike some languages, WinBatch quite readily accepts a negative value in a
select/case statement. We’ll talk about selection mechanisms in Chapter 8.

While StrCmp is convenient and very useful, there also may be times when we want to
make a string comparison on a case-sensitive basis. For example, if we request a
password before permitting access to data, we might prefer to test for an exact match and
not allow mistakes in capitalization to pass unchallenged. For this purpose, we have two
choices:

• The StriCmp function performs the same operation as StrCmp but executes a case-
dependent comparison.

• The >, >=, ==, !=, <=, and < relational operators, introduced in Chapter 5, can be
used for string comparisons.

Remember: to the computer, everything is simply a number. Strings are only a
convenient pretense for our benefit.

The RelationalOperators.wbt program demonstrates the use of the relational operators to
perform a case-sensitive comparison. Here is the program reporting that "one apple" is
less than "ONE APPLE":

When a string comparison is made, the lengths of the strings are ignored. Instead, the
comparison begins with the first character of each string. If the first characters of each
match, the next characters of each are compared, continuing until a mismatch is found.
The rules for string matches made using the relational operators are:

• If every character matches exactly and the strings are the same length, the strings
are reported as identical.

• If every character matches until the last character of one string is reached but the
other string has remaining characters, the longer string will be reported as larger.

• If the mismatch is between two numeric characters, the string with the larger
numeric character is reported as larger.

• When two case-mismatched alphabetic characters are found—one uppercase and
one lowercase—the string with the uppercase character is reported as larger (even
though the ASCII character code for A is 65, or 41h, while the character code for
a is 97, or 61h). This is how the comparison of apples appears above.

• For mismatched nonalphabetic and nonnumeric characters, the ASCII character
codes are used. Following the rules for alphabetic characters, the string with the
lower character code is reported as the larger string. For example, "one apple#"

112

Chapter 6 : Computer Vocabulary – Part III

is reported as less than "one apple$" because the character code for # is 35 (23h),
one less than the character code for $ (36 or 24h).

The code for a case-sensitive comparison in the RelationalOperators.wbt program is:

While @TRUE

 ButtonPushed = Dialog("StringCmp")

 if sTemp1 == sTemp2 then sResult = " is equal to "

 if sTemp1 > sTemp2 then sResult = " is greater than "

 if sTemp1 < sTemp2 then sResult = " is less than "

 sReport = '"' : sTemp1 : '"' : sResult : '"' : sTemp2 : '"'

EndWhile

In many cases, the test you will be interested in is equality (==) to determine a match. A
test for greater than (>) or less than (<) is useful for sorting a list.

Alternately, these comparisons could be performed using the StriCmp function.

Other String Operations

WinBatch provides several other useful string functions. These functions count characters
in a string, fill strings, pad strings, truncate strings, and remove leading and trailing
spaces from strings.

The StrCharCount Function
The StrCharCount function returns the number of character in a string. This function is
useful when dealing with double-byte character sets, such as Kanji, because the StrLen
function would report the length as if the characters were single-byte. For the standard
European (English) character sets, the StrLen and StrCharCount functions will return the
same value.

The StrFill Function
The StrFill function creates a string of a specific length and fills it with a specific
character. If no fill character is specified, the string is filled with spaces. Alternatively, a
string of characters can be specified. For example, StrFill(‘ABC’, 20) produces the
string "ABCABCABCABCABCABCAB".

The StrFix Functions
The StrFix, StrFixLeft, StrFixChars, and StrFixCharsL functions either pad or truncate
existing strings to a fixed length. Strings requiring padding are filled with a specified
character (or string) or with spaces. Padding or truncation can be applied from either the
right or left.

113

Introduction to Programming

The StrTrim Function
Also useful, the StrTrim function removes both leading and trailing spaces from a string.
To the eye, leading – and especially trailing – spaces aren’t particularly apparent but
there are many circumstances where space characters can cause undesired or unintended
results. For example, if we were to run a comparison between a term entered by the user
against a list of terms but the user’s entry had an (invisible to the user) trailing space, our
comparison would not find a match even though, technically, there might be a matching
entry.

For this reason and others, it is always helpful to trim excess spaces from strings before
converting them to numbers, making comparisons or, not least, checking password
entries.

Additional String Functions
Several additional string functions appear in WinBatch to offer additional convenience in
string handling. These are:

• StrClean removes or replaces characters in a string.

• StrCnt counts the occurrences of a substring within a string.

• StrInsert inserts a new string into an existing string.

• StrOverlay overlays a new string onto an existing string.

• StrTypeInfo gets character-type information for a string, or information for a
character-type.

Lists and List-Selection Operations

In WinBatch, lists are simply special cases of the string data type. WinBatch treats a list
as a string where the list entries are separated by a single character. The ItemExtract
function (introduced earlier) searches a string (a list) looking for the specified delimiter to
return a substring.

A tab-delimited format is a common standard. Most spreadsheets, for example, both
export and import data as tab-delimited lists; that is, as text files with the fields separated
by tab characters. An example of a list (the tab-delimited string used by WinBatch) might
appear as:

Apple»Pear»Orange»Plum»Banana»Grape»Pomello»Mango»Papaya»Lemon

Here, a list of fruits are separated by tab characters (») identifying (delimiting) the
separate fields.

More commonly, a tab-delimited file consists of records with several columns per line.
For example, a record may contain an item name, quantity, and price. Each field
(column) in the record is separated by a tab character (»), and each row ends with a

114

Chapter 6 : Computer Vocabulary – Part III

carriage return/line feed (CRLF) character pair (denoted as ↵). An exported file might
look like this:

apples»345»1.25↵

pears»198»2.37↵

oranges»216»3.45↵

plums»57»2.45↵

bananas»623»1.34↵

grapes»16»4.57↵

pomellos»98»5.72↵

mangos»92»6.87↵

papayas»344»2.99↵

lemons»1234»1.54↵

Having a list format is only the first step. We also need a way to present the list. In a
WinBatch dialog, the ListBox control is the convenient way to display a list for selection.

The tab-delimited file format that is an industry standard and the tab-delimited
list format used by WinBatch are not completely compatible. This dichotomy is
not a problem, but you should keep the differences in mind. For example, if the
preceding example were read from a file, WinBatch would read these as
individual lines, ending with CRLF pairs, which could then be reassembled into a
list.

When we used the ArrayFileGet in SearchTest4.wbt, this is what we saw there
as a result; each line was read – breaking on CRLF pairs – into a separate array
element.

Another alternative is the FileGet function which also reads an entire file,
returning a string variable containing the file.

A ListBox control accepts and displays an associated tab-delimited list, allowing a
selection to be made from the list. The selected item is highlighted and, when the dialog
returns (closes), the associated list contains only the selected item.

The WinBatch ListBox control is similar, but not identical in operation, to the
ListBox control used in other languages, for example, in Visual Basic or Visual
C/C++.

List Initialization
The first step is to initialize the list. We could initialize a list using a tab-delimited string:

115

Introduction to Programming

itemList =
"Apples":@TAB:"Pears":@TAB:"Oranges":@TAB:"Plums":@TAB:"Bananas"

However, more commonly we initialize a list by assigning an empty string to the list:

itemList = ""

Then we use the ItemInsert function to add entries to the empty list. The ItemInsert
function is called as:

itemList = ItemInsert(newItem, index, itemList, delimiter)

First, notice that the list variable (itemList) serves as both a variable that receives the
value returned by the ItemInsert function and as one of the function’s arguments. As
mentioned previously, a list is simply a string receiving special treatment; thus, the
original list (string) is passed to the ItemInsert function, and the revised list (string) is
returned after inserting the new entry.

The newItem argument is the entry to be added to the list. The index argument tells
ItemInsert where the item should be inserted. The index argument can be used in
several ways:

• An index of 0 places the new item at the beginning of the list.
• An index of –1 places the new item at the end of the list.
• Any numeric index places the new item following the numbered entry. For

example, an index of 2 places the entry in the third list position (following the
second entry).

The delimiter argument should always be specified as @TAB if you are planning to use the
list with a ListBox control. If this is simply a list maintained for some other use, then you
are free to specify a different delimiter—@cr, @lf, |, &, comma or any other single
character you choose. If you are creating a list of lists, each level in the hierarchy of lists
should use a different delimiter. The exported tab-delimited file example shown earlier
(the apples, oranges, etc. file) is actually a list of lists where the lowest hierarchy is tab-
delimited (»), while the lists themselves are delimited using a carriage return (↵).

List Creation
The ListSelection.wbt program demonstrates creating, displaying, and selecting from
lists. It uses four lists: one associated with a displayed ListBox and three auxiliary lists to
contain items associated with the selection list. The information used to populate the lists
is read from a tab/CRLF-delimited file.

Before opening the data file, our first requirement is to initialize several variables,
including the variables that will be used to contain the lists created from the data file:

116

Chapter 6 : Computer Vocabulary – Part III

fileIn = "Parts.lst" ; source file for data

listItem = "" ; initialize all of the lists

listStkPN = ""

listStkQuant = ""

listStkLoc = ""

listDisplay = ""

The string variables are initialized by assigning them to empty strings. If a string variable
is not initialized, an error will occur when that variable is passed as an argument to a
function (for example, to the ItemInsert function).

Once the variables have been initialized, the next step is to open the data file and begin
reading the data (file operations will be covered in detail in Chapter 10):

hFileIn = FileOpen(fileIn, "READ") ; open input file and get a handle

A file handle (hFileIn) is a numerical identifier assigned when the
FileOpen function is called. This handle uniquely identifies the opened
file – within the application – and is required for all subsequent file
access functions as well as for closing the file. WinBatch applications
may have up to five files open at one time.

While @TRUE

 sLineIn = FileRead(hFileIn)

 If sLineIn == "*EOF*" Then Break ; break out of while loop

 If sLineIn == "" Then Continue ; repeat while loop

Each FileRead operation reads from the open file until a line break (CRLF) is reached, so
that each read operation retrieves one line of text of whatever length.

When the end of the file is reached, FileRead reports by returning the string *EOF*. We
test for this condition, and break from the loop. We also test for blank lines in the data
file, and Continue looping if this condition is met, so that we don't try to add empty lines
to our lists.

Assuming that we have read a line of data, our next task is to parse this line into separate
fields and to place these fields into lists:

sListItem = ItemExtract(1, sLineIn, @TAB) ; extract item name

sListItem = StrFix(sListItem, "", 100) ; pad with spaces

sListItem = StrCat(sListItem, nItemCount) ; then add the index number

117

Introduction to Programming

A little special handling was used for the first data field. After calling ItemExtract to
retrieve the data item, the StrFix function is used to pad the line with spaces to a length
of 100 characters before adding our list index (nItemCount) to the end of the string. The
result is a string that looks something like this:

Webley Defaminizer 1

When we display this list (as shown a bit later), Webley Defaminizer (whatever that may
be) appears at the end of the list even though it happens to be the first item read from the
data file. The reason is that the displayed list has been sorted alphabetically. However,
the list index, which is 1 in this case, is both the order in which the items were read and
an index that will be used to retrieve associated data elements from other lists.

The padding added to the string is to space the index value to the right where it will not
appear on the display. We're using a trick to hide a bit of auxiliary data while still
keeping it where we can find it later. The reasons for this bit of subterfuge will be shown
in a moment.

The next step is to add the modified item to listItem:

listItem = ItemInsert(sListItem, 0, listItem, @TAB) ; insert at first
of list

Each new item read from the data file is being inserted at the beginning of this list,
simply because that's a convenient location. For listItem, the order isn't immediately
relevant since we're going to sort the results before displaying them.

For the next three lists, however, the order of the items inserted is relevant. We need to
maintain these lists in the same order in which the items were read from the data file—in
the same order as the index values that we added to the item names.

Because we can treat sLineIn as a tab-delimited list, we can also use the ItemExtract
function to conveniently retrieve the second, third, and fourth items from each line:

sListItem = ItemExtract(2, sLineIn, @TAB) ; extract quantity

listStkQuant = ItemInsert(sListItem, -1, listStkQuant, @TAB) ; insert
at end of list

sListItem = ItemExtract(3, sLineIn, @TAB) ; extract P/N

listStkPN = ItemInsert(sListItem, -1, listStkPN, @TAB) ; insert at
end of list

sListItem = ItemExtract(4, sLineIn, @TAB) ; extract location

118

Chapter 6 : Computer Vocabulary – Part III

listStkLoc = ItemInsert(sListItem, -1, listStkLoc, @TAB) ; insert at
end of list

As each data element is retrieved, it is added to the listStkQuant, listStkPN, and
listStkLoc lists, with each successive item placed at the end of its respective list, thus
maintaining the lists in proper order.

Next, the variable nItemCount, which is the list index value, is incremented before the
while loop continues:

 nItemCount = nItemCount + 1

EndWhile

Finally, once the end of the data file has been reached—the *EOF* flag has resulted in athe
While loop being ended—the file handle is used to close the file before proceeding
further:

FileClose(hFileIn) ; close the input file

We close the file now because the file was only opened to read the data, so it isn't needed
for any further input or output.

List Display
Our next step is to copy the listItem list, by sorting it with ItemSort, into the
listDisplay variable. Since listDisplay is the variable member associated with the
ListBox dialog control, the sorted list will be displayed automatically when the dialog is
called, which is done next:

While @TRUE

 listDisplay = ItemSort(listItem, @TAB) ; initialize listbox with
sorted list

 ButtonPushed=Dialog("Selection")

Here is the resulting dialog, with the sorted list ready for selection:

119

Introduction to Programming

Notice that the index values, which are at the ends of strings too long to display, do not
appear in the list. Also notice that Webley Defaminizer, which was the first item in the
text file, appears last in the displayed list.

At the bottom, below the ListBox, four fields will display data associated with the list
selection (after clicking the Check button). To accomplish this, we need the auxiliary data
lists that were created at the same time as the displayed list.

List-Selection Handling
Our first step is to ensure that a selection was made from the list. We do this by testing
for an empty string:

 If listDisplay != "" ; is there a selection?

For a File ListBox, which is a file-selection list, there is an option to require a
selection before a dialog can return. (The File ListBox dialog control is
discussed in Chapter 13.)

If no selection has been made, we simply ignore the reporting instructions and go back to
displaying the dialog.

Once we're sure that a selection has been made, we start by separating the returned string
into two values: the name of the selected item and the index value at the end of the string.

nLen = StrLen(listDisplay) ; get entry length

sIndex = StrSub(listDisplay, nLen - 10, -1) ; get rightmost chars

120

Chapter 6 : Computer Vocabulary – Part III

sIndex = StrTrim(sIndex) ; trim for index value

sItemSelect = StrSub(listDisplay, 1, nLen - 10) ; drop rightmost
chars

sItemSelect = StrTrim(sItemSelect) ; trim for item name

Here, we use the StrTrim function to remove both leading and trailing spaces from the
two substrings. This is a convenient way to clean up and remove the padding used to
arrange the display.

Now that the index value has been retrieved, we can use the ItemExtract function again
to fetch the corresponding entry from the listStkQuant, listStkPN, and listStkLoc lists
and to display each of these as part of the report as we loop back to displaying the dialog:

 ; get the rest of the particulars from the separate lists

 sStkQuant = "In stock: ":ItemExtract(sIndex, listStkQuant, @TAB)

 sPN = "P/N: ": ItemExtract(sIndex, listStkPN, @TAB)

 sLoc = "Location: ": ItemExtract(sIndex, listStkLoc, @TAB)

 EndIf

EndWhile

exit

Because we have no convenient method of rearranging the three auxiliary lists to match
the sorted list, we use the index value to retrieve the associated data from each and
display this data at the bottom of the dialog:

121

Introduction to Programming

Lists of Lists
Using index values and several auxiliary lists, as shown in the previous example, isn't the
only method of retrieving data associated with a list selection. The ListSelection2.wbt
program produces the same results as the ListSelection.wbt program, but demonstrates
different (and more compact) mechanisms for tracking the data.

Earlier, we mentioned that you can create a list of lists by using a different delimiter for
each level in the hierarchy. In ListSelection2.wbt, we create a WinBatch list where the
sublists are tab-delimited (») and the lists are delimited by carriage returns (↵). We will
use this list of lists in place of the several auxiliary lists employed in
the ListSelection.wbt demo.

As before, we will begin by initializing blank lists. This time, there are only two of them:

fileIn = "Parts.lst" ; source file for data

listItem = "" ; initialize all of the lists

listStkData = ""

The file-open operation hasn't changed and, again, we read one line at a time from the
data file and then use ItemExtract to retrieve the item name. But, once we have the item
name, we insert this piece of data into the listItem list. In this example, we simply insert
each new item at the end of the list; we do not pad the entry or append an index.

sListItem = ItemExtract(1, sLineIn, @TAB) ; extract the item name

listItem = ItemInsert(sListItem, -1, listItem, @TAB) ; insert at
end of list

Next, we insert the entire retrieved data line into the listStkData list. However, instead
of using a tab-delimiter, which is already used in our sublist, we insert a carriage return as
the delimiter between the sublists.

listStkData = ItemInsert(listStkData, -1, sLineIn, @CR) ; insert at
end of list

Each item is inserted at the end of the list, maintaining the same order in both listItem
and listStkData. At this point, we have two lists: one contains only the item names, and
the second contains the item names and all associated data in a list of lists.

As before, the list of item names is copied to listDisplay as a sorted list:

listDisplay = ItemSort(listItem, @TAB) ; initialize listbox with
sorted list

ButtonPushed = Dialog("Selection")

122

Chapter 6 : Computer Vocabulary – Part III

Next, as in the previous example, when the dialog returns, a test is used to determine if a
selection was made before copying the selection to the sItemSelect variable.

If listDisplay != "" ; is there a selection?

sItemSelect = listDisplay ; copy to report display

This time, however, we don't have an index value to extract. We only have the list of lists
to search for the data we want. To accomplish this, we need to use a for loop to
temporarily extract each of the sublists as listTemp:

For i = 1 to ItemCount(listStkData, @CR)

 listTemp = ItemExtract(i, listStkData, @CR)

 If ItemLocate(sItemSelect, listTemp, @TAB) == 1 Then Break

Next

Once we have extracted each sublist, ItemLocate is perfectly suited for a test to determine
if our target matches the first field in the sublist. If ItemLocate returns a value of 1,
indicating a match in the first field, we know that we've found the proper sublist, and a
break statement takes us out of the loop.

If you're familiar with the Itemxxx functions provided by WinBatch, your first
thought might be to use the ItemLocate function, as nIndex = ItemLocate(
sItemSelect, listStkData, @CR). Unfortunately the ItemLocate function isn't
appropriate since it tries to find a complete match between the substrings
identified by the delimiter and the target string; it does not identify a partial
match as a reportable result.

Then, with the appropriate sublist, using ItemExtract to retrieve the three subfields is
easy. Just remember, however, that this time the subfields are in 2, 3, 4 order, rather than
being the nth items in three separate lists.

 ; get the rest of the particulars from the sublist

 sStkQuant = "In stock: " : ItemExtract(2, listTemp, @TAB)

 sPN = "P/N: " : ItemExtract(3, listTemp, @TAB)

 sLoc = "Location: " : ItemExtract(4, listTemp, @TAB)

 EndIf

EndWhile

exit

123

Introduction to Programming

And that's it. This is a more compact method of handling some complex data, not just in
terms of the code required but also, and more important, in terms of memory usage. The
padding used in the earlier example does require space in memory, and saving that is a
fair tradeoff for a bit more complexity in programming.

List Item Removal
One more item list function deserves mention: ItemRemove. As its name suggests, the
ItemRemove function simply removes a designated item entry (or sublist) from a list.
ItemRemove is called as:

 list = ItemRemove(nIndex, list, delimiter)

Another very appropriate method of create lists is found in the Arr… functions
where, for example, the ArrayFileGetCsv function can read the entire file using a
single command instead of opening the file and reading entries individually.

Passwords

When we discussed edit boxes in Chapter 3, we noted that any edit box with a variable
name beginning with the characters PW is automatically treated as a password entry box,
which means that the characters typed are echoed by asterisks (*). This said, there really
isn't much else involved in asking for a password, although you can use the AskPassword
function for a convenient predefined dialog. The AskPassword function is called as:

pw_Password = AskPassword("Security check", "Enter password")

For a hacker, most password lists are not particularly secure. In fact, many applications
do a poor job of "concealing" their password lists. Rather than storing passwords, a
somewhat better method is to use the password entry to generate a numeric value or an
encrypted key and to store this value. Later, when a password is entered for access, the
same process is repeated, and the result is compared to the stored key. The passwords
themselves are never stored and, therefore, cannot be quite so easily compromised.
The Password.wbt program demonstrates a simple key-generation routine.

While often misused, the term hacker properly refers to anyone who is
experienced at digging into computer programs and systems to find out how
they work. Most good programmers are also hackers. The term cracker properly
refers to those who have just enough programming talent to be dangerous
without necessarily being good enough to find employment and who massage
their puny egos by attacking other peoples' systems. In other words, hackers take
things apart to find out how they work; crackers try to destroy what they lack the
talents to understand.

124

Chapter 6 : Computer Vocabulary – Part III

Keyboard input

While string entries are the most common form of input, there are occasions when a
simple keystroke would be sufficient. Furthermore, sometimes it's useful to be able to
watch for a keystroke when another application is running.

The WaitForKey and WaitForKeyEx functions offer a conditional keyboard-input function
that can wait (even in the background) for keys to be pressed and report which key was
struck. The WaitForKey function takes the form:

nKey = WaitForKey(char1, char2, char3, char4, char5)

If your application needs to monitor fewer keys, any of the five arguments can be
specified as blanks.

Most keys are entered as a single character string in the form: "a"..."z", "1"..."0", or " "
(space). However, some keys, such as "!", are not allowed. (If in doubt, experiment.)
Also, WaitForKey ignores the state of the Shift key, so it can't differentiate between
lowercase and uppercase; "A" and "a" are both allowed, but you cannot use both the
uppercase and lowercase characters in the same instruction.

Function keys and some other special keys also can be used, as follows:

Key Code with WaitForKey

Function keys (F1 through F12) "{Fn}"

Enter key "{enter}"

Insert key "{insert}"

Escape key "{escape}.

PageUp key "{pgup}"

PageDown key "{pgdn}"

Home key "{home}"

End key "{end}"

The arrow keys are not accepted in any form.

The WaitForKey function is demonstrated in the WaitForKey.wbt program.

Summary

Relatively speaking, we've spent more than a little time on strings and various aspects of
string handling, simply because it is unlikely that you will do very much programming
without strings in one form or another. In addition to building and parsing strings, we've

125

Introduction to Programming

126

also covered searching and replacing substrings for both case-sensitive and case-
insensitive operations and changing the case of strings from mixed to full uppercase or
full lowercase.

Since lists in WinBatch are simply a special case of strings, we've also gone into this
topic at some length to cover such operations as building lists, sorting lists, retrieving list
items, and searching lists. Also, for flexibility, we've shown how to create lists of lists.

Finally, to round out the topic, we’ve touched briefly on passwords as strings and, in
closing, on a method of monitoring the keyboard for specific keystrokes.

Now that you have a fairly good tool set to work with, in Chapter 7, we'll start working
with somewhat more sophisticated operations. We will undertake larger tasks and link
small procedures and even small WinBatch programs to produce something larger.

So, you've made it this far. Don't back out now—things are just beginning to get really
interesting.

Chapter 7 : A Toolkit for Operations

CHAPTER 7 : A TOOLKIT FOR OPERATIONS
FUNCTIONS AND SUBROUTINES

function – a function is a form of subroutine that returns a single value to the
main program – The PC User’s Pocket Dictionary

subroutine – (a.k.a. subprocedure) a related set of instructions that perform a
single task, called by name from the main program. Commonly performed tasks
are isolated into subroutines so that they can be used over and over by different
parts of the same program – The PC User’s Pocket Dictionary

WinBatch provides a variety of ready-to-use tools, in the form of predefined functions,
which are the principal components used in building applications. When the WinBatch
functions do not satisfy your programming needs, you can define your own subroutine
(UDFs – i.e., User Defined Functions or Subroutines) or use external batch files. Another
option is to call independent executable applications from your programs.

IMPORTANT TIP: In WinBatch Studio, if you click on a function name (shown in
blue) and then hit Shift-F1, WinBatch Studio will open the help page for that
function.

Functions

In previous chapters, a number of functions have already been introduced but, thus far,
we have not discussed functions in general. A function is simply a predefined piece of
code that may accept one or more arguments (parameters), performs a task and,
optionally, returns a result value.

Functions have the form:

FunctionName(parameter1, parameter2, ...)

For example, the StrCat function is defined in the WIL (Windows Interface Language)
Reference Help file as:

StrCat

Concatenates two or more strings.

Syntax:
StrCat(string1, string2, ..., stringN)

Parameters:

127

Introduction to Programming

(s) string1, etc. at least two strings you want to concatenate

Returns:

(s) concatenation of the entire list of input strings

In this case, the ellipsis (…) indicates that a variable number of arguments can be
supplied. In most cases, however, a function requires a set number of parameters that
must be supplied in the order specified.

The : concatenation operator can be used quite conveniently in place of the
StrCat function.

In the help file, five conventions are used to denote the types of data used as parameters
and as return values.

Convention Data Type Description

(a) array A collection of data elements as sets of data (see Chapter 4).

(f) float A fractional (decimal) numeric value (see Chapter 4).

(h) huge
number

A long decimal number string, which may represent a
number too large to be converted to an integer. 'Huge
number' is a special data type; a long decimal number string,
which may represent a number too large to be converted to
an integer. This value cannot be modified with standard
arithmetic operations; it requires the use of the Huge Math
extender. (For example, the function FileSize can be called
with a flag to return a Huge number).

(i) integer A numeric value that must be a whole number; also used to
pass or return Boolean (TRUE/FALSE) values (see Chapter
4).

(s) string A word, sentence, or array of characters; may also be a list
or a variable name (see Chapter 6).

The WIL Reference Help file also provides brief examples of how functions are used. For
the StrCat function, the example looks something like this:

Example:

user = AskLine("Login", "Your Name:", "", 0)

msg = StrCat("Hi, ", user)

Message("Login", msg)

128

Chapter 7 : A Toolkit for Operations

The help file also offers advice and a description of how a function is used, as well as
comments about any idiosyncrasies or special features that apply to the function. For
instance, in the description of the StrCat function, you will find that the sample code
could also be written using substitution:

 sMsg = "Hi, %sUser%"

There is also a caution that substitution should be used only for simple, short cases.

The main point here is that the WIL Reference Help file is an excellent source of
reference information. When you are in doubt about how to use a function, you should
refer to the help file for the list of calling parameters, format, and other information.

User Defined Functions
Some languages, such as C/C++, allow programmers to create their own functions to
perform tasks, including defining the calling parameters and the return value types. While
previous versions of WinBatch did not provide a means of defining your own functions
(except as sub-procedures), now WIL supports user-defined functions (UDF's).

There are two types of User Defined Functions (UDF's):

• #DefineFunction UDF's; variables are local to the UDF and cannot be referenced
by the calling function or procedure.

• #DefineSubroutine UDF's; variables are global and accessible to the calling
function or procedure.

A #DefineFunction UDF is defined as follows:

#DefineFunction functname(param1, param2, param3,… param16)

 <…code…>

Return retval

#EndFunction

#DefineFunction and #EndFunction are the keywords indicating the beginning and end of
the UDF.

Functname is a placeholder for the name of the function. The function name must begin
with a letter, can contain letters, numbers, and underscores, and can be up to 30
characters long. You may not use a function name that is the same as the name of a WIL
DLL function, but you may override a function name that's in an extender DLL.

129

Introduction to Programming

WIL extender Dlls are special Dlls designed to extend the built-in function set of
the WIL processor. These Dlls typically add functions not provided in the basic
WIL set, such as network commands for particular networks (Novell, Windows
for WorkGroups, LAN Manager and others), MAPI, TAPI, and other important
Application Program Interface functions as may be defined by the various
players in the computer industry from time to time. These Dlls may also include
custom built function libraries either by the original authors, or by independent
third party developers. (An Extender SDK is available). Custom extender Dlls
may add nearly any sort of function to the WIL language, from the mundane
network math or database extensions, to items that can control fancy peripherals,
including laboratory or manufacturing equipment. See Chapter 16 for more on
Extender DLLs.

You may specify up to 16 optional parameters. Param1 … param16 are placeholders for
your actual variable names that your UDF will receive when it is called.

Between the #DefineFunction and #EndFunction keywords is the code that will get
executed when the UDF is called. It may contain a Return command followed by a value
(or an expression that evaluates to a value), in which case the UDF will end and return
this value. If you specify a Return command without a value, the UDF will return 0.

If a UDF does not contain a Return command, it will execute to the end of the UDF and
return 0.

An Exit command in a UDF will cause the entire script to end, not just the UDF.

A UDF may be defined anywhere in a script, as long as it is defined prior to being used
for the first time. A UDF may be defined or used in a separate script that is called with
the Call command, as long as it is defined before it is used. You may not have nested
UDF definitions (i.e., each #DefineFunction must be followed by an #EndFunction as a
pair).

A #DefineFunction UDF will not have access to any variables in the main WIL script,
other than the variables passed as param1 … param16. Any variables set in a UDF will be
destroyed when the UDF returns, other than the return value of the UDF. Any percent
signs in the UDF code will be expanded at runtime (when the code is called), not at
define time.

You may return a file handle or binary buffer or COM/OLE object from a UDF using the
Return command. However, if you open one of these types of handles in your UDF and
do not return it using the Return command, you are responsible for freeing it before the
UDF returns (i.e., FileClose or BinaryFree or {object} = ""); otherwise, the object
represented by the handle will become an "orphan" and will no longer be accessible and
may not be automatically freed when the script exits.

130

Chapter 7 : A Toolkit for Operations

Subroutines

The principal difference between a function and a subroutine is that the subroutine is not
called with an argument list and does not return a value. Instead, a subroutine uses
variables already defined within the program and returns results by setting values for one
or more variables.

Subroutines offer two potential benefits.

• Subroutines can be used to organize an application by creating and
identifying blocks of code devoted to specific tasks. Giving an application a
structure in this fashion makes it more convenient to locate, observe, and
debug particular tasks.

• Any task that will be used more than once, from different points in the
program, can be placed in a subprocedure. This lets you avoid writing
duplicated code and means that only one copy of the code needs to be
debugged.

External versus Internal Subroutines

In WinBatch, we have a choice between using external subroutines written as
external .wbt batch files and using internal subroutines called as gosub
instructions. In choosing between these two forms, the external subroutine offers
a few advantages including:

• isolation from the calling program – that is, the external subroutine does not
share variable names with the calling application, thus avoiding possible
conflicts.

• reusability – since the subroutines are contained in external files, once a
subroutine has been created and debugged, it can be used with multiple
applications.

The disadvantages parallel the advantages:

• isolation means that all arguments must be passed using the command-line
parameter format.

• unlike a gosub subroutine, the external file containing the subroutine must be
explicitly referenced when the subroutine is invoked.

• In addition, when compiling a script and its subroutines into an executable
file, remember that all called subroutines must be compiled using the encrypted
or encoded option of the compiler.

131

Introduction to Programming

Which form – internal or external – you choose to employ is mostly a matter of
circumstance and preference. If the routine is one which you expect to use
frequently with different applications, then creating an external subroutine has
the advantage of convenient reusability and may well be worth your while.

As an additional example, the Mortgage.wbt program in Chapter 9 includes
provisions to call an external subroutine – from FormatCurrency.wbt – or to call
the same routine as a gosub instruction from :Format_Dollar_String. Both sets
of instructions are in the Mortgage.wbt program. To test the alternatives, simply
change the variable value for bExternal to either @TRUE or @FALSE and execute.

The general format of a subroutine is not complex. The application uses a gosub
instruction that references a label identifying the subroutine. The subroutine terminates
with a return statement, which sends execution back to the next statement following the
gosub instruction.

For an example, let’s look at the HyperLink.wbt program which uses several subroutines.
The HyperLink.wbt program is a utility that allows the user to create an HTML page with
links from a large body of data supplied as a multicolumn spreadsheet.

The HyperLink.wbt utility uses two dialogs. The first is a file-selection dialog:

This dialog just shows a directory tree with the default file mask set to *.txt so that a tab-
delimited text file can be loaded as the source. (Most spreadsheets can export data in a
tab-delimited format, with tab characters representing the column breaks and carriage
return/linefeed breaks identifying rows.)

Once a file has been selected, the second dialog begins by reading the first line of the tab-
delimited file—the line containing the column headers—and presenting two item lists
containing the individual headers. A selection from one list identifies the label column,
and the second list identifies the hyperlink information.

132

Chapter 7 : A Toolkit for Operations

Options are also provided to select either an HTML format (one containing only a list of
hypertext links) or a tab-delimited format, where the original columns are retained except
that the labels are reformatted as hyperlink references.

In the illustrations, the program is being used with a file listing of music
selections that are available through the Internet. The tab-delimited source file is
included with the program files, but it supplied for demonstration purposes only.
It is quite likely that some of the links will not be valid, since links frequently
change over time.

The program was written so that it could be employed in a generic fashion rather than
being limited to a single data source and format. It has been employed in preparing a list
of antique auto parts for publication on a web site and for parsing several other database-
derived files for publication. You may, of course, modify the source file as desired and
put it to such uses as you see fit.

The gosub Statements
The HyperLink.wbt program begins with a sequence of gosub statements executing
subroutines:

DirChange(DirScript())

sFileIn = "music.txt"

sFileOut = ""

gosub selectFile

gosub selectColumn

gosub testSelection

gosub processFile

exit

133

Introduction to Programming

The four gosub statements have self-explanatory labels, and each statement sends
execution of the program to the label identifying the subroutine. For example, the entry
point for the selectFile subroutine is identified by the label :selectFile:

;==

; Select the input (source) file

;==

:selectFile

Notice that the label itself must be identified by a leading colon, although the
gosub statement does not include the colon in the reference.

The three comment lines that precede the label provide a visual identifier, making it easy
for the programmer to locate the subroutine and offering a brief amplification of the
purpose and function of the subroutine. The comments and their placement are
optional—they could follow the label or could be omitted entirely.

The Subroutines
The code appearing within the subroutine can be virtually anything desired. In the
selectFile code, the subroutine simply invokes a predefined fuction: AskFileName as:

:selectFile

 sFileIn= AskFileName("Select tab-delimited source", "", "Text
Files|*.txt", "*.txt", 1)

return

Each subroutine must terminate with a return statement. The return statement sends
program execution back to the point immediately following the invocation of the gosub
statement. In this example, the next statement in line is another gosub, but the program
can resume execution at any point for any purpose. (as in the testSelection and
processFile subroutines, described shortly).

Also notice that the variable sFileIn, which will return the name of the selected file, was
initialized before the subroutine was called. In this case, initialization provides a mask
used to limit the files displayed for selection. Without this initialization, the FILELISTBOX
member of the dialog would default to showing all files. In effect, the FILELISTBOX
member provides its own internal initialization.

In many other cases, however, variables must be initialized before being used. For
instance, calling the StrCat function with an uninitialized string as an argument will
cause WinBatch to declare a fault and interrupt execution. WinBatch rejects the
uninitialized argument because it could contain anything—it could be pointing at some

134

Chapter 7 : A Toolkit for Operations

location in memory that holds whatever values were left there by other operations—or it
could contain nothing.

When in doubt, always initialize variables before use. If there are no default
values to be assigned, float and integer variables should be initialized as 0; string
(and list) variables should be initialized as an empty string ("").

When the testSelection subroutine is called, the application already has a number of
variables that have been read by previous subroutines. The testSelection subroutine
extracts specific information and queries the user for confirmation before proceeding:

;==

; Requests confirmation of the file and option selection

;==

:testSelection

 nHyperLink = ItemLocate(listHyperlinkColumn, listColumns, @TAB)

 nLabel = ItemLocate(listLabelColumn, listColumns, @TAB)

 If(nLabel == 0) || (nHyperLink == 0) Then exit

 GoSub formatLine

 sReport = 'The output format will appear in the format:
[':sLineOut:']. If this is correct, select "Yes" to continue.'

 If AskYesNo("Question", sReport) == @NO Then exit

return

Notice the call to another subroutine:

 GoSub formatLine

After the formatLine subroutine is called and returns, execution simply resumes within
the testSelection subroutine.

The formatLine subroutine is also called from the processFile subroutine, but this time,
it is called from inside a while loop. In this case, the subroutine is called multiple times—
each time the loop repeats—always returning execution to inside the while loop.

;==

; Processes the input file according to selections

;==

:processFile

 sFileIn = FileFullName(sFileIn)

 sFileOut = StrFix(sFileIn, "", StrLen(sFileIn) - 4)

135

Introduction to Programming

 If rbHypertext == 1 then

 sFileOut = StrCat(sFileOut, ".HTML")

 Else

 sFileOut = StrCat(sFileOut, ".LST")

 EndIf

 hFileOut = FileOpen(sFileOut, "WRITE") ; open the output file and
get a handle

 If rbHypertext == 1

 FileWrite(hFileOut, "<html>")

 FileWrite(hFileOut, "<body>")

 EndIf

 While @TRUE

 sLineIn = FileRead(hFileIn)

 If sLineIn == "*EOF*" Then break

 gosub formatLine

 If sRef != ""

 FileWrite(hFileOut, sLineOut)

 EndIf

 EndWhile

 If rbHypertext == 1

 FileWrite(hFileOut, "</body>")

 FileWrite(hFileOut, "</html>")

 EndIf

 FileClose(hFileIn) ; close the input file

 FileClose(hFileOut) ; close the output file

 Message("Done", sFileOut)

return

Finally, the formatLine subroutine uses the information read from the file and the column
selections specified in the selectColumn subroutine to format an output string.

;==

; Format the column fields for output

;==

:formatLine

 sTemp = ""

 If rbHyperText == 2

136

Chapter 7 : A Toolkit for Operations

 For i = 1 to (Min(nLabel, nHyperlink) - 1)

 sTemp = StrCat(sTemp, ItemExtract(i, sLineIn, @TAB)," ")

 Next

 EndIf

 sRef = ItemExtract(nHyperlink, sLineIn, @TAB)

 sName = ItemExtract(nLabel, sLineIn, @TAB)

 If sRef != ""

 sLineOut = StrCat(sTemp, '', sName,
'
')

 Endif

return

Subprocedure Execution
At this point, you may be feeling a little confused about what is happening and to whom.
The following is a diagrammatic representation of the HyperLink program, showing how
the various gosub instructions direct execution through different subroutines.

Execution using gosub instructions

The main program uses a sequence of four gosub statements, and both the testSelection
and processFile subroutines make calls to the formatLine subprocedure. This use of
formatLine demonstrates one of the strengths of subroutines: The same block of code can
be employed more than once, from different locations within the program, without
needing to repeat the code. In this example, there is only one formatLine subprocedure,
but it can be called from anywhere within the program as needed.

You’ll see subroutines used in later examples in this book both to avoid duplicating code
and to organize programs.

137

Introduction to Programming

External Batch Files

WinBatch also provides functionality allowing other .WBT programs to be called and to
return results to the calling program.

The Call function accepts two parameters:

• The name of a .WBT program file to be invoked
• A list containing the names of variables to be passed as parameters

Here is an example where a program file called GetData.wbt is invoked with three
arguments named in the quoted list:

Call("GetData.wbt","'Parts List.lst' sList nCount")

The first argument is the name of a file that contains data to be used to create a list. The
second argument is the name of the variable that will receive the generated list. The final
argument is the name of the variable to receive the item count.

An external batch file is essentially a small utility program to be invoked by
another .WBT application.

There is an important distinction here between the list of variable names and the
variables. The parameter list consists of string arguments naming variables that belong to
the calling application; these are simply labels and are not the variables themselves.
Instead, under WinBatch, the named variables are globally available both to the calling
.WBT application and to the .WBT application called.

A maximum of nine (9) arguments can be passed as command-line parameters.

In this fashion, the called application can make changes by assigning values to the
variables named as parameters, thus passing the results of operations back to the calling
application.

The Run function, allows other .WBT files to be launched as independent applications.
Using Run, arguments can be passed as command-line parameters in the same fashion as
with the Call function, but the two programs do not share variables. In other words, the
application launched using Run cannot return values to the calling application.

The ExternCall.wbt program demonstrates using the Call function to execute two
external batch files.

So, the first Call invocation is made to the GetData.wbt program:

nCount = 0

sList = ""

138

Chapter 7 : A Toolkit for Operations

DirChange(DirScript())

; open the source file and return an array of entries

Call('GetData.wbt', '"Parts List.lst" sList nCount')

Message("List count", "Found ":nCount:" items in [":sList:"]")

The program reports the number of elements found in the source file (Parts List.lst),
followed by the generated list. If the file couldn't be opened because it wasn't found, the
variable nCount is returned with a zero count, and the string sList contains a brief error
message that is displayed.

Next, because the returned list is unsorted, ExternCall.wbt will invoke another .WBT
file, SortData.wbt, to put the data in alphanumeric order. This time, however, instead of a
file name, the arguments passed are the name of the array and the delimiter used in the
array:

Call("SortData.wbt", "sList @TAB")

Message("Sort results", "Sorted ":nCount:" items as [":sList:"]")

exit

Again, the results are reported on return from the call.

Let’s take a look at the two external programs called by ExternCall.wbt to see how we
pass arguments to routines invoked using the Call function and, within these external
programs, how the parameter lists are recognized and used.

The First External Program
When the GetData.wbt program is called – the variable param0 contains a count of the
number of parameters received. We begin by testing to ensure that the appropriate
number of arguments was passed when GetData.wbt was invoked. A series of tests is also
applied to check the parameter types. Regardless of what we plan to use these variables
for, param1 is expected to be a file name, and param2 and param3 are each expected to be
labels (strings). We also check that the filename passed as Param1 exists.

If param0 < 3 ; insufficient arguments

 Message("Attention","This script is not meant to use used alone.
It is used by other scripts")

 exit

Endif

If IsNumber(param3) Then exit ; parameter 3 isn't a variable name

If IsNumber(param2) Then exit ; parameter 2 isn't a variable name

If IsNumber(param1) Then exit ; parameter 1 isn't a filename

139

Introduction to Programming

If FileExist(param1) == 0

 %param2% = "File Error"

 %param3% = 0

 return

Endif

Once we're relatively sure that the arguments are appropriate, the next step is to initialize
a couple of local variables, then open the file to read the contents.

nIndex = 0 ; initialize a count index

sResult = ""

hFileIn = FileOpen(param1, "READ") ; open the input file and get a
handle

The FileOpen function expects a string argument with the file name. However, rather than
a literal string to pass, param1 contains the name of a variable containing the name of the
file. To pass this name as an argument, instead of the usual string enclosed in quotes, we
use the param1 argument directly.

If you use the debugger to step through execution, you'll be able to watch the
param1 variable and see that it does, indeed, contain the appropriate file name.
Using the debugger is discussed in Chapter 15.

Once the file is opened, the rest of the process is relatively routine. The contents of the
file are read. This file is a list of lists. The first item in each list is used to build the data
that we intend to return as an item list.

While @TRUE

 sTemp = ""

 sLineIn = FileRead(hFileIn)

 If(sLineIn == "*EOF*") Then break

 nIndex = nIndex + 1

 sTemp = ItemExtract(1, sLineIn, @TAB)

 sResult = StrCat(sResult, sTemp, @TAB)

EndWhile

FileClose(hFileIn) ; close the input file

140

Chapter 7 : A Toolkit for Operations

Once we're finished with the file, we need to transfer the item list and the item count
from the local variables, which will not be accessible when GetData.wbt returns, to the
variables identified by param2 and param3. Remember that we don't access the variables
themselves; instead, we get the names that ExternCall.wbt uses for the variables.
The GetData.wbt program could be called by any WBT application, so we cannot be sure
which variable names the calling application will use.

By using the %substitution% operation, we can assign the values in sResult and nIndex
directly to the sList and nCount variables belonging to the ExternCall.wbt program. We
do this by enclosing the names contained in param2 and param3 in percent signs:

%param2% = sResult ; assign the result string to param2

%param3% = nIndex ; assign the count to param3

Drop(sLineIn, nIndex, sResult, sTemp) ; discard local variables

Return

Since we're using substitution instead of writing the variable names directly into the code,
the uncertainty about which names the calling application will use is not a concern.

The Drop function, which is invoked before the GetData.wbt program returns, is not
strictly essential. The Drop function simply removes the listed variables from memory,
performing cleanup and saving some memory space.

When variables are declared (by appearing to the left of an equal sign, as in nVar =
value), memory is allocated to hold each variable. These variables remain allocated until
the Drop function is invoked or until WinBatch exits. Normally, we aren't too worried
about clean up. Most of these demo programs are simple, and once they’re finished, any
variables used are de-allocated on closure. Here, a small provision for cleanup seems
appropriate because we're writing what are essentially small utility programs to be
invoked by another .WBT application.

As a general rule, applications should clean up after themselves by using the
Drop function to remove variables from memory when they are no longer
needed. It is possible for WinBatch applications (and other applications) to
exhaust system resources unnecessarily.

The Second External Program
The second external program called from the ExternCall.wbt program is SortData.wbt.
This program relies on a standard function supplied by WinBatch.

Here, we have only two arguments passed as parameters: the string (item list) and the
delimiter used in the list. To sort the list, we invoke the ItemSort function with the two
arguments, accept the sorted list in a local variable (sList), and then assign sList to the
original list argument:

If param0 < 2 Then exit

141

Introduction to Programming

If IsNumber(param1) Then exit ; should be list of data

If IsNumber(param2) Then exit ; should be char (delimiter)

sList = ItemSort(%param1%, %param2%)

return

This task would have been just as easy (or easier) to accomplish in the original program.
The only reason for invoking SortData.wbt as a subprogram is to show a second example
of using the Call function.

Executable Programs

While the Call function allows a WinBatch application to call other WinBatch programs
interactively, the Run function allows WinBatch to launch other executable programs.
Executable programs include .EXE, .COM, .PIF, and .BAT files, as well as data files
associated with executable programs.

Like the Call function, the Run function accepts two parameters: the name of the
executable program and, optionally, a list of command-line parameters. Its format is:

Run(program_name, parameters)

If a data file, such as a .DOC file, is executed using the Run command, any command-line
parameters will be ignored.

If only the executable name is provided, without a drive/path specification, the Run
function searches the current directory first, the Windows and Windows/System
directories next, and the DOS path specification last. If the requested program is found,
the Run function returns @true; if an error occurs, it displays an error.

Unlike DOS, where an error result could be returned from a launched
application, once a Windows application has been launched using the Run
function, there is no further communication with the .WBT program. Under
DOS, batch programs sometimes relied on error codes returned by launched
applications. In a multitasking environment such as Windows, however,
launched applications are independent and there is no readily returned error
code.

The Run_Exe.wbt program demonstrates running an executable program. It begins by
displaying a file directory dialog with the file mask set to "*.exe", allowing an
executable file to be selected. The dialog also offers an edit box for the entry of
command-line parameters. After the user makes a selection and, optionally, supplies
parameters, the Run function is called to execute the chosen program.

This is the relevant portion of the code for Run_Exe.wbt:

142

Chapter 7 : A Toolkit for Operations

DirChange(DirScript())

:loop

sFileRun = AskFileName("Select executable application", DirWindows(2),
"EXE Files|*.exe", "notepad.exe", 1)

sArgs = AskLine("Enter arguments", "Enter arguments: (optional)", "")

if Run(sFileRun, sArgs) then goto loop

Message("Error", "Can not run " : sFileRun)

goto loop

exit

The labeled subprocedure loop does not need a gosub instruction because it executes
automatically. The final instruction goto Loop keeps this set of instructions executing
until closed by clicking on the CANCEL button.

Summary

We began this chapter by introducing the concept of functions and how functions are
called and used. We explained how parameter types and return types are identified (in the
WinBatch documentation) and offered some suggestions for using the reference help file.

The next subject was how WinBatch allows you to create subroutines, which serve a
similar purpose to custom functions. The gosub and return commands were introduced as
elements used in calling and returning from subroutines. Subroutines are always a part of
the same application file.

We then described how to call subroutines provided by external .WBT files, explaining
how arguments and values are passed to external subroutines and how results can be
returned.

Last, we discussed launching external applications, not as external subroutines but simply
as independent programs.

In this chapter, we mentioned that one of the advantages of using subroutines is that they
help add structure to your applications. The subject of structuring applications will be
expanded on in upcoming chapters. More immediately, in Chapter 8, we'll look at the
principal methods of controlling operations within an application.

143

Introduction to Programming

144

Chapter 8 : Going With the Flow

CHAPTER 8 : GOING WITH THE FLOW
CONTROLLING OPERATIONS

flow \`flõ\ n. 3: a smooth, uninterrupted movement.

enumerate \i-`n(y)ü-me-rãt\ v. 2: to specify one after another.

One of the basic requirements in any programming language is a means of controlling the
flow of execution within an application. We need to be able to direct an application to
perform different tasks in response to user inputs, the results of previous operations, or
the results of testing data values from a file or another source.

We have two basic choices for controlling the execution of operations: use a stop-and-ask
approach or write decision mechanisms.

The stop-and-ask approach involves having the application stop and request instructions
every time a choice is required. Although this is theoretically possible, it would be an
extreme exercise in frustration, both for the user and the programmer.

The frustrations to the user should be obvious. Using a program that required you to
make all of these decisions—in terms the computer could understand—would be orders
of magnitude harder than simply performing the task without using a computer.

From the programmer's standpoint, the amount of code required to query the user at each
decision point—to explain where the program had reached and ask what choice to
make—would not be nearly as onerous as the job of writing the code to handle the
selections. In almost every case, handling the user's selections would require more work
than simply writing code to execute a logical decision without asking.

Our alternative, writing decision mechanisms, is really what programming is about. We
use decision mechanisms to direct the program to perform the appropriate tasks at each
juncture, causing the application to perform different task sequences according to the
information available at each point.

Branching and Program Control Mechanisms

If everything in an application was a strictly linear process—open file A, read value B,
close A, and write to C—its flow chart would look like this:

A linear execution

If we were able to diagram an application like this, there would be little reason for us to
write a program to handle the job. After all, if an application was designed to perform

145

Introduction to Programming

exactly and precisely absolutely identical steps (with identical data) every time it was run,
then why write the program in the first place?

Instead of a linear flow, we usually require branching execution, or sending the program
to perform different sets of tasks. The practice of branching is one you should find
yourself using frequently, because few practical programs are purely linear.

There are occasions when the 'very simple' is useful, but they are rare. For
example, years ago, a very useful and simple utility required 14 lines in
assembly code to ensure that, when the computer was booted, the NumLock key
was turned off. That utility is now obsolete, since that function can now be
found in the BIOS settings.

In contrast, virtually all applications depend on conditional instructions and on branching
– often using goto and gosub instructions – to perform different sets of operations.

Goto and Gosub Branches

The goto and gosub instructions are similar in operation. Both instructions are called with
a label and execution of the program branches to continue with the instructions
immediately following the label. The label in the application program is simply a unique
word which is preceded by a colon (:). For example:

goto label_a
exit

:label_a ;label serving as the target for a goto or gosub statement
{statements to execute}

Here the goto instruction branches to the point in the program identified as :label_a and
execution simply continues from that point.

The gosub instruction functions in a similar fashion except that the gosub expects to reach
a return statement which sends execution back to the point following the original gosub.
For example:
gosub label_a
 {further statements to execute}
exit

:label_a ; label serving as the target for a goto or gosub statement
 {statements to execute}
return

Here the gosub branches to the point following :label_a, executes the statements
following the label and then – when the return statement is reached – returns to the
instructions following the gosub statement.

146

Chapter 8 : Going With the Flow

Most often, a gosub – or a goto – statement would be reached after a conditional test – a
decision to execute a subroutine for some purpose and to then return to the original
portion of the program. This is not an absolute, of course, since both gosub and goto
statements can be used simply to organize program code or to use a single subroutine
multiple times by calling it from more than one point in a program. For examples, see the
topic Subroutines and the HyperLink.wbt program in Chapter 7.

The figure below shows a diagrammatic representation of a program where conditional
statements use goto’s and gosub’s to branch to program labels to perform different
subtasks.

Branching using goto and gosub instructions

Notice that the subroutines following :label_1, :label_2 and :label_4 conclude with
exit statements while :label_3 – which is reached with a gosub rather than a goto branch
– ends with a return statement allowing execution to resume – following the original
gosub – with the goto label_4 instruction. The illustrated example, of course, is only a
hypothetical structure and there are several other mechanisms used for controlling
execution.

147

Introduction to Programming

Forms of controlled branching

Typically, we need our applications to execute complex operations, and this requires
methods to provide control and to allow the application to make decisions. Basically,
there are four basic types of control mechanisms exercised in computer programs: if
statements, select statements, for loops, and while loops. These types of control are
illustrated here:

Types of program flow control

Each of these types of flow-control mechanisms has a variety of subtypes and can be
structured in several fashions.

If Decisions

There are five basic structures which a conditional if statement can take:

The first is a simple if ... then where a single statement is executed if the conditional is
true thus:

if expression then statement

Notice that there is no endif needed to close the conditional execution because only one
statement or instruction can be executed

The second is the structured if ... endif statement, thus:

148

Chapter 8 : Going With the Flow

if expression

 series

 of

 statements

endif

… which allows several instructions or a block of instructions to be executed before the
block terminates.

Third, the if.. then ... else ... format allows either of two statements to be executed
as:

if expression

 then statement

 else statement

Like the single statement if … then format, there is no terminating endif.

Fourth is the structured if ... else ... endif statement, thus:

if expression

 series

 of

 statements

else

 series

 of

 statements

endif

… which provides two alternatives, each of which can be one or more statements.
Depending on the conditional test, only one of these blocks will be executed, the other
will not.

Finally there is the complex if...elseif...else...endif format which provides two (or
more) tests and two (or more) alternatives as:

if expression

 series

 of

149

Introduction to Programming

 statements

elseif expression

 series

 of

 statements

else

 series

 of

 statements

endif

This type of if statement can take any of many forms and these can – potentially –
become quite complex and, also potentially, quite confusing. Of course, the confusion
belongs to the programmer, not the application because, to a computer, everything is
quite simple; either a condition is met or it is not.

In each of these varied conditional statements, we begin with a statement of the form:

if (test condition is true) then (do this)

If the stated condition is found to be TRUE, then the defined task (or tasks) is executed.
Alternatively, if the test condition is not evaluated as TRUE, then the task is not performed.

True or False

In developing your test conditions, you need to be aware of what constitutes a Boolean
TRUE or FALSE. To the computer, a Boolean TRUE is simply a nonzero result, and a
Boolean FALSE is a zero result. Thus, if we write a test condition as:

if (a – b) then ...

…where a equals 1 and b equals 5, the result is a –4, which is decidedly not zero;
therefore, the test result is TRUE.

Conversely, if we write a test condition as:

if(a == b) then ...

…the equality test (==) returns a zero result, correctly identifying the two arguments as
unequal.

150

Chapter 8 : Going With the Flow

For a simple demonstration of Boolean TRUE/FALSE, run the Logic.wbt program.
The Logic.wbt demo begins by asking for two numbers:

A Boolean comparison

The test used in Logic.wbt is:

If(nNumber1 - nNumber2)

 Message("Boolean TRUE", nNumber1 : " does not equal " : nNumber2)

Else

 Message("Boolean FALSE", nNumber1 : " equals ": nNumber2)

Endif

exit

This particular format emphasizes the point that Boolean tests may not be completely
intuitive. In this test, a FALSE result is recognized if the two values are the same, and a
TRUE result is returned if they are different.

The program reports the evaluation coherently in a message box:

Reporting Boolean results

The point to keep in mind is that how the computer interprets TRUE and FALSE—as values
of nonzero versus zero—is not necessarily the same as how you are accustomed to
interpreting true and false.

Simple Tests

The simplest form of an if statement is:

151

Introduction to Programming

if(test) then …

This form can be shortened by omitting both the word then and the parentheses:

if test …

In either variation, if the test condition yields a Boolean TRUE, the statement that follows
is executed.

Test conditions can take many different forms. For example, you can use the comparison
operators (described in Chapter 5) or WinBatch functions that report TRUE or FALSE
results, such as IsNumber or IsMenuChecked.

In many cases, you will want to have more than one statement executed if a test condition
is TRUE. For these cases, the format is:

if (test) then

 statement one

 statement two

 …

 statement n

endIf

In this form, any number of statements can be controlled by the if statement the
conditional list ending when the endIf statement is reached.

The stepped indentation is used to show statements that are executed as a group
as, in this case, when the if statement is satisfied. This indentation is solely for
the programmer's benefit and is not required by WinBatch or by other languages
or compilers.

Another form of the if statement, executes an action when the test is TRUE and an
alternate action when the test is FALSE. The general format is:

if(test) then statement one

else statement two

Here, statement one is executed if the test is TRUE, and statement two is executed if the
test is FALSE.

To execute multiple statements for TRUE and FALSE tests, use the form:

152

Chapter 8 : Going With the Flow

if (test) then
 statement one
 statement two
else
 statement three
 …
 statement n
endif

Compound Tests

Quite often, you'll need test statements that take account of more than one factor within a
single test. For example, we can write an if test as:

if (test_1 && test_2) then …

In this case, both test_1 and test_2, either or both of which can be complex expressions,
must evaluate as TRUE before the test passes.

As an example, suppose that our program will request a value in the range of 32 to 212,
representing the temperature range in degrees Fahrenheit for water to remain fluid (at
normal atmospheric pressures). We could write a simple test using the AND operator to
ensure that the value entered was in the valid range:

if ((nTemp >= 32) && (nTemp <= 212)) …

Now, if a value of 216 were entered by accident, the first conditional test would pass,
because the value is greater than 32. However, the second test would fail, and the if
statement would remain unsatisfied, which is exactly what is desired.

In a similar fashion, we can write a condition where either of two tests will satisfy the if
statement:

if ((nTemp <= 32) || (nTemp >= 212)) …

Using the OR operator, this condition says that a temperature less than 32 (freezing) or a
temperature greater than 212 (steaming) is acceptable.

This form can be extended to include more tests, like this:

if(((test1 && test2) || (test3 && test4)) && (test5 || test6))
…

153

Introduction to Programming

Here, either test5 or test6 can be true, but the statement also requires one of the other
pairs—test1 and test2 or test3 and test4—to satisfy the conditions.

Alternatively, we might want to write a test where one of two conditions was required to
be true but not both (called an XOR test). For this, we could use negation in a complex
condition, thus:

if ((test1 || test2) && ! (test1 && test2)) …

Here, we have two separate sets of conditions: the first, (test1 || test2), is satisfied
if either test1 or test2 is valid. The second, ! (test1 && test2), imposes negation
and is evaluated as TRUE as long as either one or both test conditions are FALSE. The result
is that the combination requires one of the test conditions to evaluate as TRUE but not
both, making this an XOR test condition.

WinBatch supplies both the AND (&&) and OR (||) logical operations, but not
an XOR (eXclusive OR) operator, as is supported in some other languages.
This does not mean that an XOR test can't be written using WinBatch, just
that it requires a complex statement to do so.

In like fashion, other compound test conditions can be constructed, such as a tertiary
XOR where one of three conditions would pass but two or more would fail. Essentially,
there are no limits to compound tests (although you do want to stop before you become
completely confused).

Complex Tests

For more complex tests, you can use nested if..then..else statements, in this format:

if(condition_1) then

 statement_1

 if(condition_2) then

 statement_2

 else

 statement_3

 endIf

 statement_4

else

 if(condition_3) then

 statement_5

 else

 statement_6

154

Chapter 8 : Going With the Flow

 if(condition_4) then

 statement_7

 else

 statement_8

 endIf

 endIf

 statement_9

endif

Trick question: Can statements 1, 4, and 8 be executed under a single set of
conditions? Which statements could be executed together? (See table below for
the answer.)

The problem with creating complex nested if..then..else statements is that it can
become difficult to say exactly what will happen under which conditions. The table
below shows the TRUE/FALSE conditions required for each of the nine statements in the
example to be executed. This type of tracing of the conditions is called a truth table.

Truth Table for a Complex Nested if..then..else Statement

C1 T F

 S1 C3 T F

 C2 T F S5 S6

 S2 S3 C4 T F

 S4 S7 S8

 S9

Since this particular format – however accurate – may be a little difficult to read, the
same information is shown below in an expanded format.

155

Introduction to Programming

Expanded Truth Table

if Condition_1 is TRUE then
Statement_1

if Condition 1 is FALSE then

if Condition_2
is TRUE then
Statement_2

if
Condition_2
is FALSE then
Statement_3

if Condition_3 is TRUE then
Statement_5

if Condition_3 is FALSE then
Statement_6

 if Condition_4
is TRUE then
Statement_7

if Condition_4
is FALSE then
StatInt_8

Statement 4 Statement 9

Nested If..Else..Endif Statements
Another variation of an if..else..endif structure nests the tests many layers deep.
The Select1.wbt demo uses deeply nested if statements to make a selection from a list.
In Select1.wbt, the decision mechanism appears as:

 If(CountryKey == "France") then

 If(sResponse == "Paris") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "Egypt") then

 If(sResponse == "Cairo") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "Russia") then

 If(sResponse == "Moscow") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

156

Chapter 8 : Going With the Flow

 If(CountryKey == "Japan") then

 If(sResponse == "Tokyo") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "England") then

 If(sResponse == "London") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 EndIf

 EndIf

 EndIf

 EndIf

 EndIf

This is a functional method that serves its purpose of demonstrating a deeply nested
if..else..endif structure. However, there are several other methods such as the
if..elseif.. conditional that are more compact, efficient, and elegant. The Select2.wbt
demo shows this alternative solution.

As nested statements can get quite complex, it’s a good idea to always write your
open/close together first and then fill in the middle; i.e.,
If
 If
 Endif
Endif

… then fill in the code in the middle.

As you can see from the examples in this section, setting up the code for complex
conditions to ensure that all possible results are tested can be a real pain. However, if you
absolutely need controls with this degree of complexity, your only reasonable choice is
construct them carefully. To guide you in programming complex conditions, create a
truth table to see exactly which conditions and paths should be followed.

157

Introduction to Programming

Switch/Case Decisions

Making selections within an application is a common requirement. The Select1.wbt
and Select2.wbt demos both employ complex if statements to choose between five
separate possibilities. In general, however, we prefer to have some simpler mechanism
allowing a choice from two or more options. The switch/case mechanism (also called
select/case) provides such a means of choosing from any list of options that can be
enumerated.

The switch and select statements serve the same function in the same
fashion. This choice of terminology is offered for compatibility (and
familiarity) with other languages where one or the other term is
supported.

A switch/case decision tree is a convenient mechanism for multiple-choice
circumstances (where there are more than two selections involved). The switch/case
decision tree takes the form:

switch test_value

 case value_1

 action statement set #1

 break

 case value_2

 action statement set #2

 break

 case value_3

 action statement set #3

 continue

 case value_4

 action statement set #4

 break

 case test_value

 default statement set

endswitch

The rules for a switch/case decision tree are:
• The test value used must have an integer value. Neither floating-point values nor strings

are acceptable in a switch/case statement. although conditionals are allowed and this
permits a "trick", thus:
string = 'dummy'

158

Chapter 8 : Going With the Flow

Switch @TRUE

 Case string == 'dummy'

 Pause('String = ',string)

 break

 Case string == 'hello'

 Pause('String = ',string)

 break

 Case string == 'world'

 Pause('String = ',string)

 break

Endswitch

The trick is that the conditional test evaluate to a numerical value (i.e., either true or
false and only one will be true).

• The case values must also be integers and, except for the default case, ideally they should
not be duplicates.

In most languages which support switch/case structures, duplicate case
values are not allowed. In contrast, WinBatch does permit duplicates –
see Duplicate Case Statements – but these should be used carefully.

• Each set of response statements may be terminated by either a break statement or
a continue statement (although this isn’t necessary, as explained in the "Fall-
Through Execution" section).
� A break statement sends execute to the end of the decision tree, which is the

endSwitch statement.
� A continue statement halts execution and resumes scanning the decision tree

for a matching case statement.
• The Switch/case decision tree must end with an endSwitch, endSelect, End

Switch, or End Select statement. (These four forms, like the switch and select
statements, are interchangeable.)

As an example, the Select3.wbt program replaces the nested if..else..endif structure
used in the Select1.wbt program with a switch\case statement.

Since nItem is an integer value, the switch/case statement makes it possible to select a
corresponding response to test against:

Switch nItem

159

Introduction to Programming

 case 1

 sCapital = "Paris"

 break

 case 2

 sCapital = "Cairo"

 break

 case 3

 sCapital = "Moscow"

 break

 case 4

 sCapital = "Tokyo"

 break

 case 5

 sCapital = "London"

 break

 EndSwitch

Here, the switch nItem statement begins a search through the tree looking for a case
statement where the value matches nItem. Once a match is found, the statement (or
statements) following is executed until either a break or continue statement is reached.

This example uses only break instructions. Once the case instructions are completed, the
decision tree resumes with the next instruction following the endSwitch statement. And,
this time, there's only one test performed instead of five:

 If(sResponse == sCapital)

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Message("Your guess was:", sMessage)

You can apply the same type of solution to much more complex situations.

Fall-Through Execution

In a switch/case decision tree, it isn't absolutely necessary for each case to be terminated
with a break or continue statement. If neither appears, once a matching case has been

160

Chapter 8 : Going With the Flow

found and execution has finished the instructions for that case, execution simply
continues with the next case in the list.

To illustrate fall-through execution, the following table shows a fragment of a
switch/case decision tree and the value of t at successive steps while nItem is set to 1
through 5 for the various cases.

If nItem equals 1 2 3 4 5

t = 0 t = 0 t = 0 t = 0 t = 0 t = 0
switch nItem t = 0 t = 0 t = 0 t = 0 t = 0
 case 5 * * * * t = 0
 t = t + 11 * * * * t = 11
 * * * * t = 11
 case 4 * * * t = 0 t = 11
 t = t + 22 * * * t = 22 t = 33
 * * * t = 22 t = 33
 case 3 * * t = 0 t = 22 t = 33
 t = t + 33 * * t = 33 t = 55 t = 66
 * * t = 33 t = 55 t = 66
 case 2 * t = 0 t = 33 t = 55 t = 66
 t = t + 44 * t = 44 t = 77 t = 99 t = 110
 break * t = 44 t = 77 t = 99 t = 110
 case 1 t = 0 * * * *
 t = t + 55 t = 55 * * * *
 break t = 55 * * * *
endSwitch t = 55 t = 44 t = 77 t = 99 t = 110
Final value of t is 55 44 77 99 110

These are essentially the values you would observe if you were debugging the operation
by stepping through the code. (The steps showing asterisks are not executed for those
values of nItem.) You could use this same type of selection to perform different subsets
of operational steps.

As another example, here is a switch structure that handles receipt of several different
types of data:

switch DataType

 case CryptoData

 gosub DecodeData

 case RawData

 gosub ProcessData

 case ProcessedData

 gosub EvaluateData

 break

 case Outgoing

161

Introduction to Programming

 gosub EncryptData

 break

endswitch

If the switch is handling encrypted data, the process begins with the DecodeData
subprocedure, followed by ProcessData, and ending with EvaluateData. On the other
hand, if the incoming data is already processed, only the EvaluateData subroutine is
called. For outgoing data, none of the preceding would be relevant, and operations would
branch to the EncryptData routines.

The assumption here is that CryptoData, RawData, ProcessedData, and
Outgoing are each integer values which have been given recognizable
names. Using mnemonics rather than numbers helps to avoid confusion
and prevent possible mistakes.

The same sequences could be accomplished with a different switch structure:

switch DataType

 case CryptoData

 gosub DecodeData

 gosub ProcessData

 gosub EvaluateData

 break

 case RawData

 gosub ProcessData

 gosub EvaluateData

 break

 case ProcessedData

 gosub EvaluateData

 break

 case Outgoing

 gosub EncryptData

 break

endswitch

Neither of these alternatives is "better" than the other; they are simply different options
for structuring the code.

162

Chapter 8 : Going With the Flow

The two preceding examples also demonstrate branching operations. The gosub
instructions send execution off to subroutines, which then return. (A goto instruction
would simply branch execution to perform different tasks without the return.)

Duplicate Case Statements

As a general rule, switch/case structures are the same in any language: They accept an
enumerated value, find a matching case, execute the instructions for that case, and then
either leave the decision tree on a break statement or allow execution to "fall through," as
explained in the previous section.

However, the continue option supported by WinBatch is a distinct difference, partially
because the switch/case structures used in most languages do not permit duplicate
values.

Consider the following fragment, assuming that nItem equals 2 when the switch begins:

switch nItem

 case 1

 sResult = "Apples"

 continue

 case 2

 sResult = "Oranges"

 continue

 case 3

 sResult = "Pears"

 continue

 case 2

 sResult = "Grapes"

 continue

 case 1

 Result = "Peaches"

 continue

endswitch

When the first case 2 is reached, sResult is set to "Oranges", but since there is a continue
statement, execution proceeds to reach the second case 2, where sResult is set to
"Grapes".

If break instructions had been used rather than continue instructions, only the first case 2
statement encountered would have been executed before leaving the switch/case
decision tree.

163

Introduction to Programming

Default Cases

The switch/case structures in most languages support a default case statement, normally
as the last case statement. The default is executed if none of the other case statements
match the switch selection.

WinBatch also supports a "default" case, but it does so in a slightly unusual fashion. In a
WinBatch program, the default can appear anywhere in the list of cases and can appear
more than once.

While most languages don't permit variables in case statements, WinBatch allows
creating a default case—one that will always be true—by entering the same variable
name in both the switch statement and one (or more) of the case statements.

An example of a default case statement appears in the following fragment:

switch nItem

 case 2

 gosub ProcessData

 break

 case 7

 gosub EvaluateData

 break

 case 4

 gosub FormatData

 break

 case nItem ; Default case

 gosub ReportData

endswitch

Here, if nItem has a value of 2, 4, or 7, there is a specific case statement. For all other
values, the default case statement (case nItem) takes effect.

Case statements are not required to appear in sequential order.

As a variation, the break statements could be replaced with continue statements:

switch nItem

 case 2

 gosub ProcessData

 continue

164

Chapter 8 : Going With the Flow

 case 7

 gosub EvaluateData

 continue

 case 4

 gosub FormatData

 continue

 case nItem

 gosub ReportData

endswitch

Then the three special cases would each trigger their specific handling, but all cases
would trigger the default.

Loops

Like most programming languages, WinBatch supports two formal loop statements:

• The fixed for loop executes a set number of times and then stops.
• The while loop executes as long as a test condition remains valid or until some

other operation causes the loop to exit.

For Loops
The for loop takes the form:

For(loop_var = start_value to end_value [by step_value])

 ...statements to execute...

Next

When the for loop starts, the loop variable (loop_var) is set to the initial value
(start_value) before starting to execute the instructions following the for statement.
These instructions are performed in order until the next statement is reached.

When the next statement is reached, execution returns to the for statement, where the
loop variable loop_var is incremented.

The increment (by step_value) can be any integer value—positive or negative. The
default increment, if by step_value is not specified, is always one (1).

If, after incrementing (or decrementing if the step value is negative), the loop variable is
greater than the end value, the loop exits, and the program continues with the first
instruction following the next statement.

165

Introduction to Programming

Until the limit is passed, each repetition of the loop repeats the same set of instructions.
However, this does not mean that the values of the variables or the data used in the
repeated instructions have not changed.

When a negative increment is used to create a down-counting for loop, you
must be careful to ensure that the start value is greater than the end value. If not,
then the for loop will attempt to become an endless loop.

To demonstrate for loop operations, the Prime.wbt program uses two loops as it executes
a search for prime numbers in the range 9 to 1001. (A prime number is defined as any
integer that is evenly divisible only by 1 and by itself.)

The first loop in Prime.wbt sets up the range of integers to be tested. However, since all
even numbers can be eliminated (2 is the only even prime), the loop is set to step by 2,
leaving only the odd integers to be tested.

sList = ""

For i = 9 to 1001 by 2

Using this loop, the test begins with values for i of 9, 11, 13, 15, …, 1001. Inside the
loop, a Boolean flag is set to TRUE:

 bPrime = @TRUE

 For j = 3 to Sqrt(i)

The inner loop sets up divisors to test against i to determine if i is a prime; that is, to test
if it is not evenly divisible by any of the divisors. However, this inner loop uses a start
value of 3, because 1 isn't relevant (all numbers are divisible by 1) and all even numbers
(divisible by 2) have already been eliminated.

Also, the largest divisor that there is any point in testing for any given i is the square root
of i. While any integer i could have a factor larger than its own square root, it will have
a corresponding factor that is smaller. Once the smaller factor is discovered, there is no
need to test further.

Finally, the simplest test to perform is whether modulo division returns a remainder of
zero (0). If so, then the integer being tested is not a prime number, the flag is set to
@FALSE, and since there's no need to test further, a break statement is used to jump out of
the inner for loop:

 If(i mod j == 0)

 bPrime = @FALSE

 break

 Endif

166

Chapter 8 : Going With the Flow

 Next ; j

 if bPrime then sList = sList : i : " "

Next ; i

Message("Primes found are:", sList)

exit

ForEach Loop
The ForEach loop is similar to the For loop, but it executes the statement block for each
element in a COM/OLE collection, instead of a specified number of times.

What Is COM/OLE?

COM/OLE Automation is an industry standard that applications use to expose
their COM objects to development tools, macro languages, and container
applications that support COM/OLE Automation. For example, a spreadsheet
application may expose a worksheet, chart, cell, or range of cells - all as
different types of objects. A word processor might expose objects such as
applications, paragraphs, sentences, bookmarks, or selections. When an
application supports COM/OLE Automation, the objects it exposes can be
accessed by WIL. You use WIL scripts to manipulate these objects by invoking
methods (subroutines) on the objects, or by getting and setting the objects'
properties (values). A full discussion on COM/OLE is beyond the scope of this
book.

The ForEach loop takes the form:

ForEach elementvariable in collection
…
Next

For each iteration of the loop, WinBatch sets the variable elementvariable to one of the
elements in collection and executes the statement block between the ForEach and Next.
When all the elements in collection have been assigned to elementvariable, the ForEach
loop terminates and control passes to the statement following the Next statement.

If elementvariable is not used before the loop, it will be created for you. If it is used
before the loop, the previously existing value of the variable is lost when the ForNext
statement executes for the first time.

The elements of collection can be of any data type, so the data assigned to
elementvariable can be of any supported type including object references.

167

Introduction to Programming

After the loop terminates elementvariable contains the last element of the collection. If
the elements of the collection are object references, you are responsible for releasing the
last references with an assignment statement or the ObjectClose function.

To terminate a loop before the last element of the collection is assigned to
elementvariable use a break statement.

Goto statements are not permitted inside of ForEach...Next loops and will cause
WinBatch to generate an error message.

It recommended that you not modify the elementvariables in a ForEach...Next loop.
Any modification you make may affect only the local copy of the element and may not be
reflected back into the collection. Attempts to modify an element may also generate an
error message.

It is also recommended that you not alter the collection by adding, deleting, replacing, or
reordering any elements. If you alter the collection after you have initiated a
ForEach...Next loop, the Collection object becomes invalid, and the next attempt to
access an element may result in an error message or other unexpected behavior.

The ForEach.wbt example shows a trick where you can iterate through single dimension
arrays returned by object properties and methods with a ForEach...Next loop. However,
you should not attempt to change array elements from within the loop.

For Loop Interruption
Although a for loop is nominally expected to execute a certain number of times, there are
occasions when it may be preferable to interrupt the loop rather than allowing it to
continue to completion.

In the Prime.wbt example, when the inner test loop finds that the integer being examined
is not a prime number and there's no need to continue testing, a break statement causes
the loop to terminate without waiting until the loop variable reaches the limit. This is a
simple matter of efficiency, since only one confirmation is required.

There are other ways to manipulate the loop operation. For instance, instead of a
conditional break statement within the loop, the loop variable could be increased within
the loop, and this change would cause the loop to terminate sooner. On the other hand, if
the loop variable were decreased within the loop, the loop might well continue, perhaps
indefinitely.

Likewise, the end value for the loop can also be increased or decreased while the loop is
executing with similar results, because the "current" end value is tested each time the
loop cycles. In other words, each iteration of the loop begins with a new test to determine
if the limit has been reached. If the limit is a variable that has been changed during prior
iterations, the current value is what is used to end the loop.

However, although changing the loop variable or end value while inside a loop serves the
purpose of changing the loop operation, this is not a recommended practice, because the

168

Chapter 8 : Going With the Flow

actual results might not be what you expected. Instead, when a more flexible loop is
desired, the while loop is probably your better choice. With while loops, the controlling
conditions tend to be more clearly apparent. The Prime2.wbt program demonstrates using
a while loop in place of a for loop.

While Loops
Like a for loop, a while loop is used to repeat a series of one or more instructions, with
the loop ending when the controlling condition is changed or when some other instruction
causes the loop to exit. However, a difference is that a for loop is expected to execute a
number of times according to preset limits; a while loop can be set to repeat indefinitely
and to exit only when a desired task is completed. The exit condition and command can
occur anywhere within the loop.

A while loop takes the form:

while(condition_is_true)

 ...execute these instructions...

endWhile

For example, the following code fragment depends on the variable bTest remaining
@TRUE (that is, not equal to zero):

bTest = @TRUE

while(bTest)

 ..first set of instructions ...

 if(aData > bData) then bTest = @FALSE

 ... second set of instructions ...

endWhile

But, somewhere within the loop, there is a test or an operation that changes the value in
bTest, setting the variable to @FALSE (or zero), which is the trigger to exit the loop.

In this example, the test condition bTest was explicitly set to @TRUE before the loop was
initiated. If bTest had not been initialized before the loop started, WinBatch would have
halted operation on an error. However, under other circumstances—for example, if bTest
were initially @FALSE—the loop would not execute at all.

Also notice that, in this fragment, the loop-breaking test condition is altered only in the
middle of a series of other instructions. However, the loop condition is tested only at the
start of each iteration. This means that the second set of instructions will continue to
execute after the test condition has changed. (Whether these latter instructions should or
shouldn't execute depends on the program routine and other provisions could be made to
ensure, if necessary, that they did not.) Although this method works, there are other ways
of breaking while loops that provide more direct control.

169

Introduction to Programming

While Loops Interruption
The SearchReplace.wbt demo (introduced in Chapter 6) contains a while loop that has no
possible chance of terminating automatically:

while @TRUE

Here, since the predefined condition @TRUE is not going to change during execution of the
loop (nor any other time), the while loop could be expected to continue indefinitely.

Within the loop, an indefinite continuation is exactly what's desired. It allows the file-
read operation, which is reading one line at a time from a file of indefinite size, to
proceed until the end of the file is reached:

 sLineIn = FileRead(hFileIn);

 If sLineIn == "*EOF*" Then Break ; break out of while loop

When the end of the file is found (indicated by the string "*EOF*"), a break instruction
carries the execution outside the loop, forcefully terminating what otherwise would
attempt to continue ad infinitum.
 ...

endWhile

Once the end of file has been reached, the remaining instructions are not followed.
Instead, the while loop exits immediately, at the point desired. It does not wait for the
current sequence to finish before the loop condition is tested.

A always remember that a while loop is potentially an infinite loop. Be sure that you do
provide an exit.

Summary

Controlling the flow of an application is a little like setting up a string of dominoes for
toppling. If you do everything right, the results are perfect; if not ….Well, the advantage
in programming is that applications are easier to modify and retest than setting up a floor
filled with scattered dominoes, and using the controlling mechanisms—if, switch/case

(or select/case), for, foreach and while—are usually simpler than balancing rows of
dominoes.

We began by showing the some variations of the if statement and explaining how
computers recognize @TRUE and @FALSE as conditions. Simple, compound, and complex
(nested if..else..endif) if forms were discussed.

While complex choices can be handled using if statements, the switch/case structure
offers a method of selecting from a list of options or branches. We described the

170

Chapter 8 : Going With the Flow

switch/case decision map structure and its uses. Also, we explained how the WinBatch
implementation of the switch/case structure is different from similar mechanisms used in
other languages.

In the final sections, the for and while loop formats were introduced and demonstrated.
We also covered methods of interrupting loops as alternatives to relying on automatic
termination.

Next, in Chapter 9, we'll look at the mathematics of computer programs—how to make
the computer handle the math. After all, it’s only a glorified adding machine, right?

171

Introduction to Programming

172

Chapter 9 : It's All in the Numbers

CHAPTER 9 : IT'S ALL IN THE NUMBERS
MATHEMATICAL OPERATIONS

"Mathematics is that subject where we neither know what we are speaking about
nor why" – Bertrand Russell

To some degree, Mr. Russell’s remark is justifiable, since pure mathematics seems to
have little connection with the reality. This actually may be the case initially. However,
mathematicians frequently find that their most abstract theorems, their most fantastic
excursions into the realm of numbers, and their purest thoughts on the subject of the
totally imaginary all eventually come to roost in some form of practical application. For
example, the mathematics of soap bubbles – surely a very ‘theoretical’ field – have found
applications in routing theory used for networks (and, of course, the Internet) while a
‘toy’ of my own youth – ring theory – is integral to the operations carried out by
computers.

With the advent of computers as the theorists’ newest tool, variously allowing brute-force
solutions to some mathematical problems but more often offering graphic (the pun is
unavoidable) insights into the nature of numbers, operations that were once possible only
under laborious effort can now be accomplished by our electronic savants in matters of
seconds or minutes.

We will not venture into the more rarefied realms of number theory in this chapter, but
we will look at many mathematical operations that are more immediately useful,
especially in the world of business. While doing so, please consider for a moment just
how difficult and laborious even these (relatively) simple operations would have been in
the days before computers.

In this chapter, we’ll look at the mathematical functions supplied by WinBatch, together
with brief examples of how each function operates. This chapter also covers date and
time functions. In the final section, we’ll use these functions in an example of a practical
business application.

Simple Numerical Manipulations

Since there is no ready nor rational standard for ranking mathematical operations in order
of importance, the only remaining order is to discuss the operations in an alphabetical
sequence. For this reason, we’ll begin with Abs.

The Abs and Fabs Functions
The Abs function returns the absolute value of an integer. The Fabs function performs the
same task for a floating-point value. When speaking of absolute value, we are simply
ignoring whether a value is positive or negative and treating it as if it were positive.

173

Introduction to Programming

For example, you could use Abs like this:

year1 = 1954

year2 = 1999

years = Abs(year1 – year2)

Message("Years", "There are ":years:" years between ":year1:" and ":
year2)

There are more complicated ways to perform a calculation of this type, for instance, we
could:
1. Subtract the two values.

2. Ask if the result was less than zero.

3. If so, multiply the result by –1 to create a positive integer.

In fact, steps 2 and 3 are essentially what the Abs function does for us.

In like fashion, the Fabs function returns a positive floating-point value, thus:

f = -12.3456

Message("Fabs(":f:") = ", Fabs(f))

These may seem like rather trivial functions, but keep them in mind. Sooner or later,
you’ll find you need an easy way to convert to absolute values.

The Average Function
The Average function returns the mean average of a series of values. The list of values
can be created as a string with the entries delimited by commas, and the individual values
may be integers, floating-point numbers, or both.

fList = "1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0"

fAvg = Average(%fList%)

Message("Average", "The average value of ":fList:" is ":fAvg)

The Average function is demonstrated in the Average.wbt program. For the list of values
shown above, it returns a result of 5.48888889:

174

Chapter 9 : It's All in the Numbers

The Ceiling and Floor Functions
The Ceiling and Floor functions accept floating-point values and return results that are
the floating-point value rounded to the nearest integer. Thus, the Ceiling function returns
a floating-point value that is the smallest integer larger than or equal to the floating-point
value. Similarly, the Floor function returns a floating-point value that is the largest
integer smaller than or equal to the floating-point value.

Although the Ceiling and Floor functions return floating-point values,
because the decimal portions of these values are truncated, the results are
the floating-point equivalents of integers.

For example, the following code, from the Floor_Ceiling.wbt program accepts a number
string and reports the Ceiling and Floor values for the number.

fVal = AskLine("Ceiling/Floor", "Please enter a decimal number (ie.
1.234)", "3.1415")

nCeiling = Ceiling(fVal)

nFloor = Floor(fVal)

Message("Ceiling and Floor of ":fVal, "Ceiling: ":nCeiling:", Floor:
":nFloor)

Exit

The demo returns the Ceiling and Floor results:

Following are some examples of results returned by the Floor and Ceiling functions:

fVal nCeiling nFloor

175

Introduction to Programming

25.2 26.0 25.0
25.7 26.0 25.0
24.9 25.0 24.0
-14.3 -14.0 -15.0
13.0 13.0 13.0

Notice that a value of 13.0 results in identical floor and ceiling values.

The Decimals Function
The Decimals function allows you to specify how many decimal places should be shown
when displaying a floating-point value. When Decimals is called with a new decimal-
point setting, the previous decimal-point setting is returned (but can simply be ignored).
Alternatively, if Decimals is called with an argument of –1, the maximum number of
decimal places are shown automatically.

The Decimals.wbt demo steps through a series of decimal settings using this code:

fVal = 0.9876543210

Decimals(-1)

Message("Decimals (full)", fVal)

For d = 0 to 10

 Decimals(d)

 Message("Decimals: " : d, fVal)

Next

Exit

The result for a decimal setting of 4 is shown like this:

Notice that the value 0.987654321 has been rounded to 0.9877 for display purposes only.
The actual floating-point value in the variable has not changed and will not change.

176

Chapter 9 : It's All in the Numbers

Also, while you can set any number of decimal places you desire (the Decimals.wbt
demo goes up to ten places), a maximum of eight decimal places will be displayed. Or, if
you prefer, any argument above 8 is treated as 8.

The Int Function
The Int function provides conversion from a floating-point value or a string to an integer
value.
sVal = "4.9"

nVal = Int(sVal)

Message(sVal:" becomes", nVal)

If the argument is a string, the string is first converted to a number value, if possible, and
then rounded to the nearest integer. Thus, a string of "4.9" would be reported as an
integer value of 5.

The Min and Max Functions
The Min and Max functions return the smaller or larger of a list of two or more arguments,
respectively.

fMin = Min(-7.8, 1.2, 560, 0.34, 45, 6.7, 8.9, -2.3, -90)

fMax = Max(-7.8, 1.2, 560, 0.34, 45, 6.7, 8.9, -2.3, -90)

Message("Min/Max", "The largest value is ":fMax:", the smallest is
":fMin)

The Min and Max functions are demonstrated in the Min_Max.wbt program. For the list of
values shown above, it returns the values 560.0 and –90.0:

Number Testing

Since WinBatch allows strings to be treated as numbers—that is, to be easily converted to
numbers—three functions are provided to conveniently test whether a variable is a

177

Introduction to Programming

number, a floating-point value, or an integer. You’ve seen these functions in examples in
the previous chapters.

The IsNumber function simply reports whether the argument can be converted to a
number, either aInteger or a floating-point value. IsNumber is called as:

if IsNumber(sVal) then ...

The IsFloat and IsInt functions perform the same as IsNumber but report whether a
variable can be treated as a floating-point value or as an integer, respectively.

The TestNumber.wbt program demonstrates a series of tests for each of these functions.
The results are reported as:

Variable IsNumber IsFloat IsInt

"This is not a number" FALSE FALSE FALSE

"0.012345" TRUE TRUE TRUE

"12345" TRUE TRUE TRUE

As you can see, the IsNumber, IsFloat, and IsInt functions seem somewhat redundant
(since there appears to be no particular differentiation between integers and floating-point
values (of course, both are numbers)).

IsNumber and IsFloat are, in fact, exactly synonymous. IsInt can be
useful for validating numbers obtained by user input or from other
sources. Although WinBatch will convert floating-point arguments to
integers for functions that expect integers, there is some rounding
involved.

Pseudo-Random Numbers
Random numbers have a variety of uses. Perhaps the most obvious applications are in
games, but, entertainment aside, random numbers do have more serious purposes. For
example, random numbers are often used to test processes, to generate initial and run
conditions for simulations, to test financial or business-transaction processing, or simply
to vary the order or sequence of events in a variety of applications. Randomization is an
essential element in a great many computer processes and applications.

However, while randomization can be very desirable, we do not have any way of
generating truly random numbers. Instead, we rely on mathematical processes that return
pseudo-random numbers. Pseudo-random numbers are not in themselves truly random,
but for all practical purposes, they can be considered random.

The WinBatch Random function is typical of the pseudo-random generator functions. It
accepts a single maximum range parameter and returns an integer that is greater than or
equal to zero and less than or equal to the specified maximum. Thus, if we call Random(

178

Chapter 9 : It's All in the Numbers

100), the returned value will be an integer between 0 and 100 inclusive, for a range of
101 values.

The Random.wbt program accepts a maximum range value and displays a generated
pseudo-random result:

Quite often, we want to generate random values in a range other than from zero to a
maximum, or we may want to generate random decimals. The Random function does not
provide these variations directly, but both are easily obtained. For example, to generate a
random value between 32 degrees Fahrenheit (the freezing point of water) and 212
degrees Fahrenheit (the boiling point of water), we simply determine that we need a
range of 180 degrees to include both the freezing and boiling point temperatures. Then
we could write our program code as:

nTemp = Random(180) + 32

For a returned result of 0, nTemp would be 32; for a result of 180, nTemp would equal 212.
All other results would fall somewhere between the two extremes.

Now suppose that we need a decimal fraction in the range 0.40 and 0.60 inclusive, and
we want two decimal places in the value. This is also easily accomplished as:

fPercent = (Random(20) + 40) / 100.0

Remember that the Random function returns values with an even distribution within the
specified range. If we need skewed results, we can write more complex distribution
formulas as well. For example, suppose that we want to simulate the results of rolling two
six-sided dice. For a single die, which should generate results in the range 1 through 6,
we would use this formula:

nSingleDie = Random(5) + 1

For two dice, the formula would be:

179

Introduction to Programming

nTwoDice = Random(5) + Random(5) + 2

This would return results in the range 2 through 12 but with a skewed distribution
matching real (and presumably honest) dice.

In like fashion, other results and other skewed distributions can be easily created to suit a
variety of requirements.

Large and Transcendental Numbers

When we need to deal with larger numbers or manipulations that are a bit more complex
than simple arithmetic, we can use WinBatch’s more powerful numerical functions.
Following our alphabetical arrangement, we’ll start with the Exp function.

The Exp Function
The Exp function takes an exponent as an argument and returns the value of the natural
log (e) raised to that value. The value of e is 2.71828183. Thus, e1 equals 2.71828183, e2
equals 7.3890561, and e2.302585093 equals ~10. Exponential expressions are frequently used
to express large numbers in a compact format. (There are other, more important reasons
for the use of exponential notation, which should be familiar to mathematicians,
physicists and engineers, but these are rather beyond the scope of the present discussion.)

The Exp function is called as:

fVal = Exp(fExp)

The Exponential.wbt program demonstrates the Exp function, converting natural
exponents to values, like this:

Related functions are LogE and Log10, discussed next. Also, see the discussion of the
exponential operator (**) in Chapter 5.

The LogE Function
The LogE function is used to calculate the natural logarithm for a value; that is, it
calculates the exponential value of e that will produce the original value. The LogE
function is called as:

180

Chapter 9 : It's All in the Numbers

fExp = LogE(fVal)

The LogE.wbt demo demonstrates the LogE function. Here, it is calculating the natural log
of 100:

Both the LogE and Log10 functions will return an error if they are called with a
negative argument.

The Log10 Function
The Log10 function performs the same task as LogE, except that the calculation is made on
the base-10 logarithm instead of the natural log. The Log10.wbt demo demonstrates the
Log10 function. Here, the base-10 log of 10000 appears as 4.0 (104.0 = 10000):

The Sqrt Function
The Sqrt function returns the square root of the argument as a floating-point value.

nVal = 456
fVal = Sqrt(nVal)

The SquareRoot.wbt demo calculates a square root, like this:

181

Introduction to Programming

Be aware that calling Sqrt with a negative argument will result in an error report: 1599
FP Math: Function returned invalid floating point number (NAN)

The easiest way to avoid having to handle invalid results like this is to prevent them in
the first place. The SquareRoot.wbt program does this with the following code:

fSquareRoot = Sqrt(Fabs(fVal))

By using the Fabs function to ensure that Sqrt always receives a positive argument, the
chance of a domain error is eliminated. However, since we want to be absolutely accurate
(mathematically speaking), for the square root of a negative value, we append the letter i
to the calculated result. The i (which stands for imaginary) is the standard notation for the
square root of –1. For example, the square root of –4 would be 2i. Or, for -456, we get
the result following:

Trigonometric Operations

If you flunked trig in school, you may not be interested in the array of trigonometric
functions provided by WinBatch. On the other hand, with the computer to do the dirty
work for you, trigonometry has never been so easy.

Standard engineering practices dictate that angles are expressed in radians rather than
degrees. To convert from degrees to radians, the formula is:

radians = @PI * degrees / 180

Conversely, to convert from radians to degrees, the formula is:

182

Chapter 9 : It's All in the Numbers

degrees = 180 * radians / @PI

In WinBatch, the formulas may also be written as:

radians = degrees * @Deg2Rad

degrees = radians * @Rad2Deg

…where the predefined constants @Deg2Rad and @Rad2Deg provide the necessary
conversion values.

The demo programs for the trigonometric functions each accept angles in degrees, which
are converted to radian values for calculation. After calculating angles in radians, the
results are converted to degrees.

The Sin, Cos, and Tan Functions
The Sin, Cos, and Tan functions calculate the sine, cosine, and tangent values,
respectively, for an angle expressed in radians. All three of these functions will accept
arguments larger than 2*π radians (more than 360°), but larger values may cause a loss of
significance in the result or, in extreme cases, a significance error may occur. For this
reason, calculations should always be made using smaller angles—less than 2*π radians
or 360°—since the sine, cosine, and tangent values remain the same at 270°, 630°, 990°,
or 2430°, ad infinitum.

A significance error means that the result reported has lost all relationship to the
expected calculation.

The functions are called as:

fSine = Sin(fRadians)

fCosine = Cos(fRadians)

fTangent = Tan(fRadians)

where fRadians is the angle in radians. As noted, with the Sin, Cos, and Tan functions,
angles should be less than 2*π radians.

The Sin, Cos and Tan functions are demonstrated in the Trig.wbt program. The demo
calculates the sine, consignee, and tangent for the angle entered:

183

Introduction to Programming

For convenience and familiarity, the Trig.wbt program accepts an angle in degrees. Then
it checks to ensure that the angle specified is within the range –360° and 360°, correcting
the angle if it is outside this range:

 While(nDegrees < -360)

 nD–grees = nDegrees + 360

 EndWhile

 While(nDegrees > 360)

 nDegrees = nDegrees - 360

 EndWhile

Second, the angle is converted to radians for the actual calculations, since each of these
functions require arguments in radians:

 fRadians = nDegrees * @DEG2RAD

Finally, after these checks and conversions, the actual calculations are made:

 fSine = Sin(fRadians)

 fCosine = Cos(fRadians)

 fTangent = Tan(fRadians)

And here you have it—painless trigonometry!

The ASin, ACos, and ATan Functions
The names of the arcsine, arccosine, and arctangent operations come from the Latin
phrase arcus cuius sinus x est. This literally means "the arc whose sine is x," which
became abbreviated as arcsine. As you may gather from this derivation, the "arc"
functions provide the inverse operations from the sine, cosine, and tangent conversions.

184

Chapter 9 : It's All in the Numbers

The ASin Function
The ASin function accepts a sine value as an argument and returns the corresponding
angle in radians. ASin is called as:

fRadians = ASin(fSine)

Because the sine values must fall in the range –1 to 1, the ArcSin.wbt demo incorporates
a simple test before calculating the angle:

if(Fabs(fSine) > 1.0) then

 sReport = "value out of range"

In this fashion, the reported angle is always in the range -π/2..π/2 radians (or –90° to
90°).

The ACos Function
The ACos function accepts a cosine value as an argument and returns the corresponding
angle in radians. ACos is called as:

fRadians = ACos(fCosine)

Because the cosine values must fall in the same range as sine values (–1 to 1),
the ArcCosine.wbt demo incorporates the same test as the ArcSin.wbt program. For the
ACos function, however, the reported angle will always be in the range 0..π radians (or 0°
to 180°).

185

Introduction to Programming

The ATan Function
The ATan function accepts a tangent value as an argument and returns the corresponding
angle in radians. ATan is called as:

fRadians = ATan(fTangent)

The tangent of an angle of 0° or 180° is zero, but the Tan function will show an
error at this value. Likewise, for angles of 90° and 270°, the tangent becomes
infinite (±∞).

The returned angle will be in the range -π/2 to π/2 radians (or –90° to 90°). However,
since a value of 0 for fTangent will produce a domain error, the ArcTangent.wbt program
includes a test requiring the fTangent argument to be nonzero.

186

Chapter 9 : It's All in the Numbers

Caveat: Trig Function Reconversion Discrepancies

In playing with the Trig.wbt, ArcSin.wbt, ArcCosine.wbt, and ArcTangent.wbt
programs, you may notice that the conversions to sine, cosine, and tangent
values and the reconversions to degrees do not always agree completely. In
some cases, the reconversion shows small errors in decimal values. In other
cases, as with the tangent and arctangent calculations, an angle of 135° becomes
-45°. This is perfectly normal.

In the case of decimal differences, these are simply the effects of working at the
limits of accuracy of the system. For example, the difference between 45° and
44.9999999° is only 0.0000001°, a very small error. Granted, there are
circumstances and applications where even this error is not acceptable, but when
accuracy is that critical, a different language and different set of processes
would normally be chosen.

As for angles of 135° becoming -45°, this is not an error since the trig functions
do not differentiate a full 360° range. Instead, the angles of 90° and 180° each
have the same sine value, 1.0000, and on reconversion, there is no way to
differentiate between the angles. The same holds true for angles of 89° and 91°,
where the sine is 0.99985, or for 269° and 271°, where the sine is –0.99985. In
short, the arc functions always return angles in a limited range rather than
attempting to differentiate between multiple angles with identical sine, cosine, or
tangent values.

The Hyperbolic Functions: SinH, CosH and TanH
If you do not have an engineering or scientific background, a full explanation of the
purpose of the hyperbolic trigonometry functions would be too lengthy and complex for
this venue; if you do have such a background, the explanation would be unnecessary.
Therefore, it should be sufficient to say that the SinH, CosH and TanH functions provide the
hyperbolic sine, cosine, and tangent values for a given angle.

Like the Sin, Cos, and Tan functions, the SinH, CosH, and TanH functions accept angles
expressed in radians and, for values greater than ±2*π radians (±360°) may return an
error. With these cautions stated, the three hyperbolic functions perform in essentially the
same manner as their counterparts discussed earlier.

These functions are called as:

fSineH = SinH(fRadians)

fCosineH = CosH(fRadians)

fTangentH = TanH(fRadians)

The three hyperbolic functions are demonstrated in the HyperTrig.wbt program. Enter an
angle in degrees to put the functions to work:

187

Introduction to Programming

Date and Time Operations

Although date and time functions may not sound like higher mathematics, the truth is that
these actually involve rather complex operations. For example, minutes and seconds use
base-60 notation, hours use base-12 and base-24, and months vary—some have 30 days,
some have 31,and February may have 28 or 29 (which means a year may be 365 days or
366 in length).

The relevance and usefulness of date/time operations are unquestionable. Many
applications, especially in business, can hardly function without access to clock or
calendar information.

We could simply allow the user to supply date/time information as required. But since the
computer has that information already, why not use it?

Date/Time Format
WinBatch uses a date/time format string, which is effectively a colon-delimited list, to
represent date/time values in an easily manipulated format. The format for the string is
"yyyy:mm:dd:hh:mm:ss". For example, noon on January 1, 2011, is represented as
"2011:01:01:12:00:00". January 2, 2012, at 2:15 appears as "2012:01:02:02:15:00".

The TimeDate Function
In WinBatch, date/time operations start with the TimeDate function, which retrieves the
current date and time from the system, supplying the information in a human-
recognizable format. The TimeDate function is called as:

sDate = TimeDate()

The TimeCheck.wbt demo provides a simple example of checking the time and date:

188

Chapter 9 : It's All in the Numbers

The TimeDate function relies on the local date/time format specification which is found in
the registry.

An alternative, where we apply our own format to the display, is discussed later in the
chapter, in the "Formatting a Date" section.

The TimeYmdHms Function
What is convenient for humans isn’t always convenient for the computer (or, more
accurately, is rarely convenient for the computer). Therefore, to retrieve date/time
information in a form that can be used in calculations, the TimeYmdHms function returns a
string formatted as "yyyy:mm:dd:hh:mm:ss".

The TimeYmdHms function is demonstrated in the TimeCheck2.wbt program, which checks
the time and date in WinBatch format:

The TimeJulianDay Function and the Day of the Week
The TimeJulianDay function is called with the current date/time as a string in the
yyyy:mm:dd:hh:mm:ss format (the format returned by the TimeYmdHms function) and
reports the corresponding (modified business) Julian date as an integer value. (A Julian
date is a number that represents the day and year.)

The TimeJulianDay function can be called as:

nJulianDate = TimeJulianDay(TimeYmdHms())

The TimeCheck3.wbt program demonstrates getting the Julian date and day of the week:

189

Introduction to Programming

Because Julian dates are simple integer values rather than a combination of year, month,
and day information, calculating elapsed periods between dates becomes a matter of
subtracting one Julian date from another. WinBatch does not provide a special function
for this purpose, but given a Julian date, the day-of-week calculation is relatively simple:

nJulianDay = TimeJulianDay(TimeYmdHms())

nDayCount = ((nJulianDay + 5) mod 7)

Since the Julian date is dated from January 1, Year 0 (A.D.), which was a Friday, the
calculation for the weekday requires an offset of 5, as shown. With this addition, modulo
division by 7 returns the weekday, where 0 = Sunday, 1 = Monday, and so on.

sWeekDay = ItemExtract(nDayCount + 1, "Sunday Monday Tuesday Wednesday
Thursday Friday Saturday", " ")

In order to extract a string with the name of the weekday, we add 1 to the numerical
weekday (we can’t extract the zeroth item from the list) before extracting the appropriate
weekday.

The TimeJulianDay function uses the local system clock/calendar and does not take into
account the local time zone offset when calculating the current business Julian date.

How the Julian Calendar Works

The Julian calendar was originally created by Joseph Justus Scaliger (1540–
1609), an Italian-French philologist and historian who grew tired of reconciling
dates in historical documents. These dates were commonly based on the reigns
of different rules. Thus, one document might record an event as the twenty-
seventh year of the rule of King Gregor, while another, from a different period
or locality, would record dates since the birth of Queen Hypolita. In addition to
the confusion in years, different calendars were also used in different areas and
different eras.

190

Chapter 9 : It's All in the Numbers

To simplify cross-references, Scaliger created the Julian calendar (naming the
calendar in honor of his father, Julius), where all dates were given as day dates
since January 1 in the year 4713 B.C. This occasion was selected as the starting
point because it was a time safely prior to any recorded history (thus avoiding
negative dates). Also, it was the coincident point of the solar cycle (28 years),
the Metonic cycle (19 solar years or 235 lunar months), and the Roman indiction
of 15 years (decreed by the Emperor Constantine).

For a more convenient reference, the Julian day 2450000 began at noon on
October 9, 1995, Universal Time (also called Zulu or Greenwich Mean Time).

Because Julian dates are so large, astronomers and others commonly rely on a
modified Julian date (MJD), where the modified date equals the Julian date
minus 2400000.5. The half-day in the conversion normalizes the MJD to start at
midnight, as do the days recorded by the rest of the world’s calendars. Thus,
January 1, 1999, can be reckoned as Julian date 2341178.5 (midnight) or, using
the modified Julian date, as 51215.

A second type of Julian calendar date, which we call the modified business
Julian date, is also in common use. In this system, the date is reported as days
since January 1, 0000. The WinBatch TimeJulianDay function relies on the
modified business Julian calendar, which makes the Julian date for January 1,
1999, equal to 730121.

Now, isn’t standardization wonderful? And exactly which Julian date do you
mean: true, modified, or business?

The TimeJulToYmd Function
The TimeJulToYmd function provides a conversion from the (modified business) Julian
date to the WinBatch "yyyy:mm:dd" date/time format. (The "hh:mm:ss" portion of the
date/time format will always be "00:00:00".)

The TimeJulToYmd function is called as:

nJulian = 730131

dateYmd = TimeJulToYmd(nJulian)

Time-Difference Calculations
The TimeAdd and TimeSubtract functions add or subtract one date/time value from
another. Both date/time values are expressed in the "yyyy:mm:dd:hh:mm:ss" format. Here
is an example:

time_now = TimeYmdHms()

191

Introduction to Programming

time_ofs = "0000:00:00:01:30:00" ; an hour and a half

time_later = TimeAdd(time_now, time_ofs)

time_earlier = TimeSubtract(time_now, time_ofs)

In other circumstances, it may be useful to determine the difference between two
date/time values in days or in seconds. The TimeDiffDays function returns an integer
value reporting the number of days between two date/time values. The TimeDiffSecs
function accepts two date/time values and returns an integer value reporting the
difference between the two in seconds.

Pause and Wait Functions
In addition to reporting and manipulating date/time values, WinBatch provides two
functions that allow an application to pause and wait for a specified interval or until a
specified time. Suspending operation for a specific interval or until a specific time can be
useful for scheduling other applications and other tasks.

The TimeDelay function suspends execution of a program for a specified interval (1 to
3600 seconds or up to one hour). The TimeDelay function is called as:

nSeconds = Random(1000)

TimeDelay(nSeconds)

WinBatch allows nSeconds to be specified as a floating-point value (i.e., 2.5 or
3.7, etc). Negative values for nSeconds are also acceptable but are treated as
simple positive integers.

For longer intervals, the TimeWait function suspends execution until a specified date/time
has been reached. For example, assume that we want to suspend execution for an hour
and a half—perhaps before launching some utility, or ringing an alarm, or popping up a
reminder to check the turkey in the oven. To accomplish this hypothetical task, we can
start by getting the current time as:

time_now = TimeYmdHms()

time_ofs = "0000:00:00:01:30:00" ; an hour and a half

Then time_ofs is set to the delay interval, and the TimeAdd function is used to create a
date/time an hour and a half later:

time_later = TimeAdd(time_now, time_ofs)

TimeWait(time_later)

192

Chapter 9 : It's All in the Numbers

Finally, the TimeWait function is called to suspend operation until the desired time is
reached.

Mathematics in the Real World

Now that we’ve looked at the variety of mathematical and date/time functions available,
it seems appropriate to show how these functions can be used in a practical application.
The problem is choosing an application that is generally relevant, since it isn’t practical
to assume that the majority (or even a generous percentage) of the readers of this book
are engineers or mathematically inclined. More specifically, we need an application that
will be of interest to the majority of the audience.

On reflection, it seems reasonable to assume that virtually everyone has some experience
with credit purchases, whether buying a vehicle, acquiring a house, or simply arranging a
bank loan. Therefore, to provide a demonstration with a commonality of interest, the
selected demo application is a simple mortgage calculator, named Mortgage.wbt.

This demo is simple only in the sense that the calculations will not include sliding-
interest scales, balloon payments, or fancy credit options. What will not be simple in this
demo is that the code will include provisions for formatting dollar amounts and date
information, as well as for checks for a variety of input formats.

The demo will accept three pieces of information: the loan principal, the interest rate, and
the length (term) of the loan.

Accepting Input Variants
A common mistake for novice programmers is to assume that input will follow some
standard format. For example, assume that the loan amount you wish to enter is
$100,000.00. How should the entry be made in the Loan Amount field—as $100,000.00,
$100000.00, 100,000, 100000, or some other variation?

In like fashion, should a 6½ percent interest rate be entered as 6.5%, 0.065, .065, or 6.5?
Since the ½ character isn’t conveniently supported from the keyboard, at least that format
can be ignored.

193

Introduction to Programming

In contrast, most stock market applications do accept figures like ½ and ¾ for
trade orders and some reject decimal entries. Ergo, this format should not
automatically be ruled out in all cases.

One option, which is too frequently selected, is to simply require a specific format and,
whenever the proper format isn’t used, to pop up a warning message explaining what is
acceptable. The Mortgage.wbt program does display a message when an input field
simply cannot be parsed, but this has been chosen as a last resort, not as a first option.

One way around the question of variants is to accept anything, reduce the input to the
simplest possible format—a raw number—and then, for display, reformat the information
in whatever style seems most intelligible.

In the Mortgage.wbt program, the first step is to treat the input for the dollar amount as a
string. The sPrincipal variable is the variable associated with the edit box for the loan
amount, but once the Calculate button has been selected, the string is copied to a second
variable, fPrincipal, for further operations:

fPrincipal = sPrincipal

fPercentAPR = sPercent

nTerm = sTerm

sDate = TimeAdd(TimeYmdHms(), "0000:00:30:00:00:00")

sStartDate = StrCat(ItemExtract(2, sDate, ":"), " / ", ItemExtract(
3, sDate, ":"), " / ", ItemExtract(1, sDate, ":"))

fPrincipal = StrTrim(fPrincipal) ; trim all leading or trailing
blanks

If fPrincipal == ""

 Display(10, "Entry error", "A loan amount is required")

 continue ; loop_on_error

EndIf

Before doing anything else, the first check is to determine if there is an entry and, if not,
to post an error message before looping back to displaying the dialog.

However, assuming that we have an entry, the next step is to decide if the entry can be
treated directly as a number value:

 If ! IsNumber(fPrincipal)

If the entry isn’t one that can be treated directly as a number value, we need to look for a
few common items that would cause a conflict:

fPrincipal = StrReplace(fPrincipal, "$", "") ; remove any $

194

Chapter 9 : It's All in the Numbers

fPrincipal = StrReplace(fPrincipal, ",", "") ; remove any commas

fPrincipal = StrTrim(fPrincipal) ; trim a second time

By looking for and removing any dollar sign characters ($) and commas, we have a pretty
good chance of eliminating the most common elements that would prevent the string
from being converted to a numerical value. And, just as a precaution, we’ll call StrTrim
again to remove any leading or trailing spaces that the previous operations might have
uncovered.

The next step is to repeat the test to see if fPrincipal is now acceptable as a number. If
not, we report the error and let the user try again:

If ! IsNumber(fPrincipal) ; test a second time

 sPrincipal = ""

 Display(10, "Entry error", "Principal amount entry is invalid")

 Continue ; loop_on_error

EndIf

At this point, we’ve tried all of the easy format conversions, and it makes more sense for
the user to reenter the information than to keep trying to discover what special form of
entry was used.

When the information is acceptable and fPrincipal can be treated as number, the
information is reformatted for display purposes before proceeding:

In Mortgate.wbt the bExternal variable can be modified to specify which type of
operation to execute.

▪ If bExternal is set to @TRUE an external subroutine (FormatCurrency.wbt) will
be called.

▪ If bExternal is set to @FALSE an internal subroutine will be called.

If bExternal ; use this code to call the external subroutine

 sPrincipal = fPrincipal

 Call("FormatCurrency.wbt", "sPrincipal")

Else ; use this code to call the internal subroutine

 sTempStr = fPrincipal

 GoSub Format_Dollar_string

 sPrincipal = sTempStr

EndIf

195

Introduction to Programming

The formatting provision of FormatCurrency.wbt and Format_Dollar_String will be
discussed in a moment.

The loan rate information also requires testing similar to the tests done for the loan
amount. Again, the first step is to check to see if there is an entry and display an error
message if necessary:

fPercentAPR = StrTrim(fPercentAPR) ; trim all leading or trailing
blanks

If fPercentAPR == ""

 Display(10, "Entry error", "A loan rate is required")

 Continue ; loop_on_error

EndIf

If ! IsNumber(fPercentAPR)

And, again, assuming that we have an entry, the next test is to determine if it can be
treated as a number.

In this case, if the format isn’t numeric, we can start by looking for a percent sign:

fPercentAPR = StrReplace(fPercentAPR, "%%", "") ; remove %% sign

fPercentAPR = StrTrim(fPercentAPR) ; repeat trim

Notice that the StrReplace operation uses "%%" rather than "%". This is necessary because
in WinBatch, a single percent sign has a special meaning as the reference operator (as
you’ve seen in many previous examples). As a single character, a percent sign in this
context will cause an error.

After deleting any percent sign characters and a second trim for leading or trailing spaces,
there’s one more provision that needs attention.

One common way to enter an interest rate is in a decimal format, such as .18 for 18%.
This particular format, however, presents a special problem, because WinBatch doesn’t
recognize a decimal number without a leading zero—0.18 is acceptable, but .18 is not.
Therefore, as a precaution, a check is made for a leading decimal and, if one is found, a
leading zero is added. After checking for a leading decimal and correcting the format, a
second check is performed to decide if fPercentAPR can now be treated as a number. If
not, the only remaining recourse is to tell the user to reenter the information:

If StrScan(fPercentAPR, ".", 1, @FWDSCAN) == 1 ; check leading
decimal

 fPercentAPR = StrCat("0", fPercentAPR) ; add a leading zero

EndIf

196

Chapter 9 : It's All in the Numbers

If ! IsNumber(fPercentAPR) ; check to ensure this is a number

 sPercent = ""

 Display(10, "Entry error", "Percentage entry is invalid")

 Continue ; loop_on_error

EndIf

If all goes well, at this point, the entry can be treated as a number. However, we still need
to decide whether the entry was made as a percentage or a decimal; for example, was it in
the form 18% or 0.18. The easy way is to assume that the percentage should fall in some
reasonable range. In this case, a percentage less than 1% is unlikely, and a percentage
greater than 99% is equally unreasonable. Therefore, if the raw value we have is greater
than (or equal to) 1.0, we’ll assume that the entry was made as a percentage value and
convert this to the decimal format that we’ll actually use in the calculations. Having made
this decision, we’ll reconvert the value to the format nn% for display purposes:

If fPercentAPR >= 1.0 ; must be percentage, not decimal

 fPercentAPR = fPercentAPR / 100.0

EndIf

sPercent = StrCat((fPercentAPR * 100.0), "%%") ; reformat for
display

For the term of the loan, a similar set of tests is performed. This last case is the simplest
of all, since we expect a period in months expressed as a simple integer value.

And, once we have the principal, interest rate, and the term of the loan, the next step is to
do the calculations.

Doing the Math

The formula for calculating payments on a loan is actually fairly simple:

In the formula, fPrincipal is the principal amount of the loan, fRate is the percentage rate
per payment period (not annual or APR), and nTerm is the number of payments. The
product of the formula, fPayment, is the payment amount required to repay the loan.

The process of calculating the loan payments is almost as simple as the formula and
requires a mere three lines of code.

197

Introduction to Programming

The first step is to convert the annual percentage rate (APR) to the monthly interest rate
needed in the formula:

fRate = fPercentAPR / 12.0 ; convert APR to monthly interest rate

The second step, even though the entire formula could be written in a single instruction,
is to break the formula down, taking the term under the bar as the first factor to calculate:

fFactor = 1 - (1 / ((1 + fRate) ** nTerm))

Notice that this formula uses parentheses to group factors and to control the order of
operations. Instead of using the parentheses, we could break this down into a half-dozen
separate operations, but that would be adding potential complications and opportunities
for error.

Breaking a complex formula down into parts is a recommended practice. By
simplifying the instructions for the computer, the instructions become easier for
the programmer to read and, therefore, less likely to contain errors. Of course,
breaking a formula into too many parts could produce a new set of errors.
Judgment and care are recommended.

We calculate the divisor term as fFactor and then use this variable in the payment
calculation:

fPayment = (fPrincipal * fRate) / fFactor

The result, fPayment, is the monthly payment on the loan at the stated interest rate for the
period specified.

One remaining task is to calculate the total interest that will be paid on the loan. The
calculation for this is simple:

fInterest = (fPayment * nTerm) – fPrincipal

That’s it. We just multiply the payment amount by the number of payments and subtract
the principal. What remains is the cost of the loan in interest.

Here is an example of the results for a loan of $100,000.00 at 6.5% for 360 months (30
years).

198

Chapter 9 : It's All in the Numbers

So, to borrow a hundred grand for thirty years at 6½%, the cost is a relatively cheap
twenty seven thousand, five hundred forty four and change … not bad if you can get it.

Simply performing the calculations, however, is not the end of task. As you can see in the
example, the date and amounts are all neatly formatted, making them easy to read. This
didn’t occur by accident.

Formatting Values

After reading the initial loan amount and calculating the payment and total interest costs,
we use a internal subroutine named Format_Dollar_String to put this information into a
standard currency format.

The bExternal must be set to @FALSE to call the internal subroutine

Since the only way we can create a truly independent subroutine in WinBatch is to use a
call to an external batch file (as explained in Chapter 7), the Format_Dollar_String
subroutine is actually a label reached by a gosub statement. But, since we want to call this
subroutine to format several different values, before the gosub statement, we copy the
value to be formatted to a variable used by the subroutine:

sTempStr = fPayment

GoSub Format_Dollar_string

sPaymentAmt = sTempStr

Then, after the gosub returns, we copy sTempStr, which is now a formatted string, to the
display variable sPaymentAmt.

The actual process of formatting the currency string is considerably more complex than
calculating the amount of the monthly payments.

199

Introduction to Programming

Formatting Currency
The fact that formatting a string is harder than calculating loan payments should not be
any great surprise. Pure numbers are easy. It’s when we get into the human factors that
the complications appear.

To start, even though the value in the sTempStr variable is presumably a floating-point
value, we can still treat this as a string and, as such, we begin by looking for a decimal. If
we find a decimal, the position of the decimal is all that we need. If not, we settle for the
length of the string plus one for the position where the decimal should have been, and we
add a decimal and two trailing zeros:

:Format_Dollar_String

 sTarget = ""

 nDecimal = StrIndex(sTempStr, ".", 1, @FWDSCAN)

 If(nDecimal)

 nLen = nDecimal

 Else

 nLen = StrLen(sTempStr) + 1

 sTempStr = StrCat(sTempStr, ".00") ; add decimal places

 EndIf

Now, armed with a position, the next routine is to insert a comma three places before the
decimal point (the standard format for making currency figures more readable). Of
course, we also have to allow for the fact that this could be a figure with less than four
digits; in which case, we don’t need a comma inserted:

 If (nLen > 4) ; have at least four digits

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 Endif

Since we don’t have a function for inserting a substring, we accomplish this task by
copying the right portion of the string into one variable (sSubStr) and copying the left
portion back to our original variable before using StrCat to recombine these with a
comma inserted between them.

We also need to check for larger values—amounts of a million dollars or more—where
the commas become even more important for clarity. This time, we don’t need to worry
about the decimal point because the string should already have one comma in place. So,
instead, we look for the existing comma and then decide if the string is long enough—if
the comma is far enough in the string—to warrant inserting another.

200

Chapter 9 : It's All in the Numbers

nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN) ; now see if more commas
are needed

While(nLen > 4)

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN)

EndWhile

If there are no commas already in place or if no more are required, the while loop will
simply terminate without doing anything. If we find occasion for inserting a comma, the
last action is to look for its position in the modified string and to continue to repeat the
process as long as needed. After all, in today’s world, some people might be trying to
borrow multiple millions (or maybe just thinking about it).

Once we have the commas in place, the last step is to add a dollar sign at the start to
produce a fully formatted currency string:

sTempStr = StrCat("$", sTempStr) ; add the leading dollar sign

Return

Formatting a currency string is only one special provision demonstrated in
the Mortgage.wbt program. It also handles the formatting of the date display.

Formatting a Date
Along with the loan amount, interest, and term, the Mortgage.wbt program displays the
date that the first payment will be due, assuming that it is one month from the date that
the mortgage calculation was made.

The code for the date display begins by using the TimeYmdHms function to retrieve the date
and the TimeAdd function to add one month to the date:

 sDate = TimeAdd(TimeYmdHms(), "0000:01:00:00:00:00")

The TimeAdd function is more sophisticated than you might expect. Suppose, instead of
adding a month, we decided to add 30 days:

 sDate = TimeAdd(TimeYmdHms(), "0000:00:30:00:00:00")

If we started with a date of 2/7/2011, this format would give us a result of 3/9/2011, since
February has only 28 days.

201

Introduction to Programming

202

Now we still need to format the date we calculated. WinBatch’s TimeDate function
returns a formatted date, but it has two shortcomings in this case:

• The available display format, which is set by the system preferences, isn’t exactly
what is desired here.

• This function only formats the current date and time, not a date one month or
thirty days later.

Therefore, instead of using TimeDate, we use the date/time string sDate as a source to
extract the day, month, and year and create our own format. Since sDate already has the
information in a colon-delimited format, we can use the ItemExtract function to retrieve
the month, day, and year, in that order, and use the StrCat function to produce a
formatted date for display:

sStartDate = StrCat(ItemExtract(2, sDate, ":"), " / ", ItemExtract(
3, sDate, ":"), " / ", ItemExtract(1, sDate, ":"))

The result is a month/day/year formatted string. This is much more in keeping with
standard (American) business usage than the default year/month/date/hour/minute/second
format, as well as more useful for our purposes.

Summary

In this chapter, we introduced the math functions and briefly explained how they are
used. Why the math functions are useful, however, is left more to your special interests
and requirements, as appropriate.

The date and time functions, on the other hand, probably have wider appeal for the
average user since date information seems to run rampant though our lives. Ergo, you’ve
seen how to retrieve, manipulate and format date (and, by extension, time) information.

As a practical example, the Mortgage.wbt program has shown not only how to calculate
mortgage rates but, probably more important, how to accept input in a variety of formats
and how to format information for a useful presentation.

Next, in Chapter 10, we’ll look at file operations, including opening, reading, and writing
files, as well as directory operations, file formats, and archiving and de-archiving files.

Chapter 10 : Shoe Boxes and File Cabinets

CHAPTER 10 : SHOE BOXES AND FILE CABINETS
DATA STORAGE AND FILE OPERATIONS

file – a named collection of data stored on disk, appearing to the user as a single
entity. – The PC User’s Pocket Dictionary

directory – in a hierarchical file system, a convenient way of organizing and
grouping files and other directories on a disk. – The PC User’s Pocket Dictionary

Our two main topics in this chapter are hard drive management and file management.
Strictly speaking, "hard drive" management is a misnomer. What we’re really talking
about are drive operations that apply to CD-ROMs, DVDs, thumb drives, memory cards
and other high-capacity removable drives, as well as any future devices that currently
exist only on drawing boards and in the imagination. What these devices are isn’t
material, since we can feel assured that they will follow existing standards of
organization and access. The operating system, device drivers, and programming
language will handle the differences in hardware, leaving us to be concerned only with
the logical organization of the information that the drives hold: the directories and files
containing our data.

The importance of file management might be judged by the fact that WinBatch supplies
73 file functions plus an additional 18 directory and 7 disk drive functions, for a total of
98 operations supporting file and drive access. We’re not going to cover all of these
functions individually, but we will introduce the more important operations and, of
course, show how they are used.

While we certainly trust that you’re already aware of the nature of a file and of a
directory, we hope you will forgive a brief refresher before we look into manipulating
files and directories.

File and Directory Concepts

A computer file can contain various items, such as a program, a part of a program, a body
of data, a graphic image, or a document created by the user. The actual file, as it is stored
on the drive, may be fragmented, which means that it may be physically stored in
fragments in many different locations on the drive. The operating system manages the
task of locating all fragments on demand when the file is read and the task of finding
space to write the material when a file is stored.

203

Introduction to Programming

DOS stands for Disk Operating System, referring to its capabilities for managing
disk (floppy or hard drive) file operations. Many versions of DOS have been
used over the years, including HDOS, PC DOS, MS DOS, and others and, while
the acronym DOS has largely disappeared, these data management tasks
continue – in new forms – to be supported by Windows, Linux, Apple OS, etc.

The concepts of file directories and hierarchical file systems are relative latecomers to the
PC world. The first disk operating systems supported files but had no concept of
directories. At that time, disks were axiomatically "floppy" disks, and the usual capacity
was 100 kilobytes (in actual use, more like 90 kilobytes). At that time, there was little
need for directories on PCs.

As drive capacities grew, and particularly with the introduction of hard drives for PCs,
flat file systems became hierarchical file systems and directories and subdirectories
became the norm, just as they always had been under Unix and other mainframe systems
(where random-access mass storage systems have a longer history).

A hierarchical file system begins with a root directory. The root directory has certain
fixed characteristics imposed by the operating system, such as a limitation of 256 file
entries (including subdirectories). In contrast, no such limitations are imposed on
subdirectories.

Fortunately, programmers do not need to know the low-level details of how the file
system operates in order to create applications. The operating system itself—DOS,
Windows 7, Linux, or whatever—handles much of the scut work involved in file access.
WinBatch (or any other high-level language) provides functions for handling file and
directory management, which make file operations virtually painless.

Even though the details are taken care of for you, a general understanding of how files
and directories function is still recommended for the programmer, because understanding
what is happening makes using the provided functions easier. Or, in other words, simply
knowing how to use a tool isn’t half as good as understanding how a tool works. Ergo, in
the following sections, as well as learning how to use files and directories, you will also
learn something of the inside structures and how the functions work.

Hard Drive Management

A common requirement for a program is to get file name and directory information.
We’ll begin with a custom utility that uses several WinBatch functions to retrieve this
information, then we’ll look at an alternative approach. Finally, we’ll look at some of the
other useful directory functions.

A Utility for Directory Operations

We introduced a drive/directory/file operation back in Chapter 6, when we needed to
open a file to perform a search/replace operation on the contents. Several of the examples
discussed in previous chapters involve drive/directory/file operations. We didn’t go into
detail about these operations earlier, focusing instead on the topic at hand. Now we are

204

Chapter 10 : Shoe Boxes and File Cabinets

ready to concentrate on the mechanisms for retrieving file and directory information. At
that time, the operation was given a minimal description, with the promise that the
subject and operations would be covered in more detail in this chapter.

One of the earlier examples presented in Chapter 3, named FileListbox.wbt, demonstrates
displaying a file-selection dialog. Now we’ll recreate a similar utility but this time we’ll
make it a callable function, named CallFileList.wbt. Once we’ve created
the CallFileList.wbt utility, the utility and selection dialog can be used by other
applications without needing to rewrite the code each time.

Planning the Utility
We could create the CallFileList.wbt utility on a hit-or-miss basis and then modify it later
as needed, but it’s far more reasonable to take moment first to decide what the utility
should do. The need for design planning was introduced in Chapter 1, where we
discussed the principles of designing applications (granted, thus far, there hasn’t been a
great deal of need for applying the principles). According to those principles, we should
determine how the utility will be called, what presentation the utility will use, and what
information the utility will return.

File selection is a feature needed by a multitude of applications, but how we select a file
can vary greatly. Different applications have different needs, and our CallFileList.wbt
utility should be able to accommodate the basic variations.

The two main items that may be wanted as available options before selecting a file are a
file mask and a starting drive/directory. Let’s begin with these as minimal criteria.

File Specification
A file mask is a mask limiting the displayed files to those that match a specification,
either for the file name or the file extension. File masks can be as simple as: *.* to show
all files, *.txt to display only files with the text format extension, A*.* to show only file
names beginning with the letter a, or variations on these.

Since this will be the argument wanted most often, we’ll specify that the first parameter
passed to CallFileList.wbt should always be the file-specification string. Furthermore,
because we expect to return a file name, we will also require at least one argument is
supplied: either a file name or a file mask. Without a supplied argument
when CallFileList.wbt is invoked, we simply have no means of returning the selection of
file names, which is the purpose of the utility function.

Wildcards in File Specifications

The asterisk character (*) is a wildcard that will be matched by any characters
and any length. For example, a specification of F*.* matches FileList.wbt,
FileList.wbt.backup, Format-Number.wbt, FormatNumber.wbt.backup,
Free Disk Space.-WBT, "Free Disk Space.wbt.autosave, and Free Disk
Space.wbt.backup.

205

Introduction to Programming

Another wildcard is the question mark character (?), which represents any single
character. For example, given a list of file names including File_2_notes.txt,
File_3_remarks.doc, File index list.txt, and Free Disk Space.wbt and
a file specification of File_?_*.*, the list of matching files consists of
File_2_notes.txt and File_3_remarks.doc only. Here, the two asterisks in
the file specification, …*.*, can match both …notes.txt and …remarks.doc.
The File_?_… portion of the specification limits the match to File_2_… and
"File_3_….

Multiple question marks will match any sequence of characters on a one-for-one
basis. Thus, a file specification of ????.txt matches Note.txt and List.txt,
but does not match Note3.txt or MyList.txt.

Drive/Directory Specification
A drive/directory specification is our second option. Since such a specification won’t
always be needed, we’ll make this argument optional. If it is supplied, it will be used; if
not, the default will be the current directory (the directory where the utility is called).

The drive/directory specification can be any valid drive or combined drive/directory
specification. Thus, the user can indicate D: to specify the root directory on drive D: or
D:\Program Files\Work Files to select a specific directory on the drive.

Any valid directory specification is accepted. For example, if the current directory is
J:\WinBatch\Chapter 10, a specification of ..\Chapter 07 moves from the current
directory up one level and then back down to the new directory.

Exploring the CallFileList Utility
The CallFileList.wbt utility is similar to the FileListBox.wbt program introduced
in Chapter 3 but this version requires either one or two parameters: at a minimum, the
default files specification and, optionally, the directory specification. To test (and
demonstrate) the CallFileList.wbt utility, a second application, called DirTest.wbt, allows
entering a file and directory specification, then calls CallFileList.wbt and, finally, reports
the selection.

In order to allow CallFileList.wbt to be invoked with a choice of parameters, we begin by
checking to see how many parameters were supplied:

Switch param0

 case 2

 selectDir = %param2% ; two parameters supplied

 ; second must be intial directory

 case 1

 selectFile = %param1% ; first parameter is file spec

 break

 case 0 ; must have one parameter

206

Chapter 10 : Shoe Boxes and File Cabinets

 exit

EndSwitch

If two parameters were supplied, the second argument must be the directory specification,
and this is copied to the selectDir variable.

If one parameter is supplied (or if the previous case falls through), the first parameter
(required) is copied to the selectFile variable. At this point, a break statement moves
execution out of the switch/case structure.

Finally, if no parameters were supplied, the CallFileList.wbt utility simply exits, since
continuing without being able to return a file selection would be pointless.

Next, we have two tests for the selectDir variable:

If selectDir != ""

 If DirExist (selectDir) == @FALSE

 Message("Drive or Directory Error", selectDir :" was not a
valid drive/directory specification")

 return

 Endif

 DirChange(selectDir)

EndIf

See also the DirExist function for another testing option.

The first test is to see if selectDir is an entry; that is, to check that the variable isn’t
empty. The second test is to see if the directory specification is a valid directory. If the
directory doesn’t exist (or if directory does exist but the specification is incorrect), the
program displays an error message and returns.

If the directory specification is valid, then the DirChange function has already changed to
the requested drive/directory. The requested directory is now the current (active)
directory, and we’re ready to call the dialog to display the directory tree and files. The
figure below shows the dialog presented by the CallFileList.wbt utility.

207

Introduction to Programming

Here, the Directory entry at the top of the dialog shows the current drive and path. The
file list shows, in order, all files matching the file-specification mask, the root of the
current directory ([..]), and (not visible) a list of the drives available on the system ([-a-
] through [-j-]). Selecting one of the other drives or a subdirectory redisplays the file
list for the new drive/path specification. Changing the drive or directory specification in
the file-list dialog also automatically changes the current directory:

While @TRUE

 If Dialog("FileSelect") == @FALSE then return

 ; if a valid file was not selected, redisplay the dialog

 If FileExist(selectFile) then break

Endwhile

In contrast, selecting a specific file requires clicking on the Select button to return. Once
the dialog has returned, the selectFile specification is tested to ensure that the file is
valid. While it may seem reasonable to assume that the selected file name is valid,
assumptions tend to become mistakes; the test is convenient insurance. If the selectFile
specification is valid, then we can break out of the while loop.

The FileExist function simply verifies that the file path and file name are valid
to make sure that a path and file with the given specification do exist. This does
not say anything about what the file is or what the file contains, only that it can
be found.

Before returning the file selection, we have one more task: checking again to see if a
drive/path specification was passed as a parameter:

208

Chapter 10 : Shoe Boxes and File Cabinets

If param0 > 1 then %param2% = DirGet() ; optional parameter

%param1% = selectFile ; always return this value

Return

If a drive/path specification was supplied, then we want to return the current directory,
using DirGet, as param2. (The selected file is always returned as param1.)

On return, the DirTest.wbt program displays the reported selection:

The CallFileList.wbt utility is only one method of getting file name and directory
information. However, examining it has shown you how the file and directory operations
work from the inside, so to speak, giving you some idea of what is going on behind the
scenes. Now let’s look at a better way to perform the same tasks.

The Windows Common File Dialog

Because of the importance of file access to all types of operations and applications, all
recent versions of Windows provide a common file dialog to manage file selection. In
WinBatch, the Common File Dialog shown below is invoked using the AskFileName
function.

209

Introduction to Programming

The Common File Dialog is much more elaborate than the file-selection dialog we
created in the CallFileList.wbt utility (shown earlier). Using the Common File Dialog, we
have a complete file-selection utility, which we can customize in several ways, including
changing the dialog title, the types of files shown, how the file list is displayed, as well as
choosing a variety of other options.

The Common File Dialog offers a standard file-selection utility that generally is used by
all Windows applications. The Common File Dialog provided by each version of
Windows may differ in appearance, but the principal features and the parameters used to
call the Common File Dialog remain constant. By providing this degree of
standardization, the users are not required to learn a new file-selection process for each
application.

Although you should be familiar with Common File Dialog—since virtually every
Windows application makes use of this facility—let’s explore the dialog’s operations and
features from a programmer’s point of view.

Features of the Common File Dialog
Beginning at the top of the dialog, on the toolbar, the caption "Look in:" labels a pull-
down list box, as shown below. This list offers a drive/directory tree with icons for drives
and drive types and for folders (or directories). The structure of
drive/directory/subdirectory is shown by indentations in the list, and any branch can be
expanded to show subdirectories (if any) or collapsed to hide directories and
subdirectories.

210

Chapter 10 : Shoe Boxes and File Cabinets

Selecting from the directory tree

In the illustration, the open folder icon shows the current display is on drive D: in the
Wilson Window Ware / Demo Programs / Chapter 10 subdirectory. The window behind
the pull-down list shows the list files (and any subdirectories) in this directory.

To the right of the pull-down list, the icon is an Up-One-Level button. Clicking on the
icon will step the display up to the root of the current directory.

The next icon is the New Folder button, which allows you to create a new directory or
subdirectory in the currently selected directory or drive.

Last, the paired buttons at the right end of the toolbar allow you to switch between
list formats.

More important than the toolbar buttons and the display options is the fact that the
Common File Dialog allows the program calling this display to specify which file types

211

Introduction to Programming

will be displayed initially and to provide a type-selection list. At the bottom of the dialog,
a pull-down list allows the user to select a file type, as shown following.

The Files of type list is created by the application—in other words, the programmer—
calling the Common File Dialog. Each entry in the list consists of two elements:

• The file type label, which appears in the pull-down list
• A file-specification mask, which is not shown but which is used to select the files

displayed (the file selection is the same process discussed earlier in the section about
the CallFileList.wbt utility)

Invoking the Common File Dialog
The DirTest2.wbt demo program shows how the AskFileName function is used to invoke
the Common File Dialog:

sDirDrive = "" ; default is always the current directory

sFileTypes = "All Files|*.*|WIL files|*.wbt;*.mnu|Text files|*.txt|"

sFileSpec = AskFileName("Select a file", sDirDrive, sFileTypes, "",1)

Message("The selected file is:", sFileSpec)

exit

The AskFileName function is called with the five parameters shown below and explained
in the following sections.

212

Chapter 10 : Shoe Boxes and File Cabinets

AskFileName Parameters

Variable Type Variable Name Comment

String Label The title that will appear on the Common File
Dialog when it is displayed

String Directory The initial drive and directory specification;
i.e., where the file display will begin

String Filetypes A bar-delimited list providing the file-type
labels and the file-specification masks

String Default filename May be a default file name or a file mask

Integer Flag 0 selects the File Save dialog style, 1 selects
the File Open dialog style, 2 selects the File
Open dialog style allowing multiple files to be
selected, 3 selects the File Save style without a
"Replace" confirmation (i.e., an automatic save
when overwriting an existing file.)

The Label Parameter
The label parameter is simply any string you want displayed at the top of the Common
File Dialog. In the DirTest2.wbt example, the label is "Select a file", but this label can
be changed to accommodate an application’s needs. For example, you might want to say
something like "Pick a data file for processing" or "Select or enter a name for
saving data". Essentially, what the dialog caption says is up to you, but brevity is
appropriate.

The Directory Parameter
The initial directory parameter is optional. In the DirTest2.wbt example, it is passed as an
empty string, meaning the dialog opens in the current (active) directory. You may specify
any drive/directory desired, either absolute, as in "C:\MyDir\MySubDir", or relative, as in:
"..\SubDir2". The rules are the same as for the DOS CD (CHDIR) command.

Before specifying an absolute or a relative directory, use the DirExist function
to ensure that the specification is valid. Then, if the directory does not exist, pass
the argument as an empty string.

The Filetypes Parameter
The file-types list argument (the pull-down list in the preceding illustration) consists of a
string composed of description and mask substrings using the vertical bar character (|) as
a delimiter. The file-type masks can be any DOS wildcard file mask. The format for this
string is:
 "description|mask|…|description|mask|description|mask|"

213

Introduction to Programming

There are two requirements:
• Entries must appear as pairs.
• The string must end with the vertical bar character.

In the DirTest2.wbt example, the file-types argument appears as:

sFileTypes = "All Files|*.*|WIL files|*.WBT;*.mnu|Text files|*.txt|"

This can be broken down as follows:

All files *.*

WIL files *.WBT; *.mnu

Text files *.txt

Notice that the entry for WIL files has two file-mask specifications separated by a
semicolon. There is no limit on the number of file masks. When the corresponding file-
type label is selected, the dialog will display all files matching any of the specified
masks.

The provided list is not sorted, and the default (initial) file type displayed will always be
the first item in the list.

The Default Filename Parameter
The default file name or default file-mask specification is an optional parameter. If
supplied, this file name or mask will appear in the "File name:" field of the dialog and
will act as a mask overriding the default file-type mask. If the entry is a default file name,
it can be accepted by the user clicking on the Save or Open button (depending on the type
of operation chosen).

The Flag Parameter
The flag parameter is an integer argument where a value of 0 selects the File Save dialog
style and a value of 1 selects the File Open dialog. A value of 2 also selects File Open but
allows one or more files to be selected. Last an argument of 3 selects File Save but with
an automatic overwrite if there is an existing file of the same name.

Returning a File Name
After the user makes a valid selection (enters a valid file name in the File name: field or
selects a valid file from the displayed names) and clicks the Open or Save button, the
Common File Dialog closes, and the AskFileName function returns a string containing the
fully qualified file name (a complete drive/directory/file name/extension). At this point, it
is up to the application to decide what to do with the returned file name—whether to open
a file or to do something else with the information.

In the DirTest2.wbt program, the only use made of the file name is to display a message
box reporting the selection. Later in this chapter and in following chapters, we’ll use the

214

Chapter 10 : Shoe Boxes and File Cabinets

Common File Dialog for more realistic purposes. Before we do this, we have a few
additional directory functions to discuss.

DIRECTORY INFORMATION FUNCTIONS

Along with the functions you’ve seen demonstrated so far, WinBatch provides other
useful drive management functions. These fall into the categories of long file names
versus short file names, default directory information, and drive information.

Converting Long and Short File Names
The change from the old 8.3 (filename.ext) file name format to the long file name format
has been a tremendous relief to virtually everyone. However, there are still occasions
when the new long file names require conversion to the old format or vice versa.
WinBatch provides two functions for this purpose:

• The FileNameLong function accepts a string argument containing a fully qualified file
name, with or without a drive and path specification, and returns a string with the
complete path/file name in the long format.

• The FileNameShort function performs the same way but returns the file name and any
directory path names in the short (8.3) format.

The secret is that no conversion is actually being performed. These functions operate by
querying the file system directly to return either the long or short forms.

Even though you are probably accustomed to seeing the long file name format
when you open a directory, the file system actually maintains two names for
each file and directory: one in the long format and a second name, generated
from the first, in the short format. The bitmap in your Windows directory, for
example, which appears as Carved Stone.bmp, also has a short name,
carved~1.bmp, stored in the subdirectory file table.

Locating Default Directories
Throughout this chapter, we’ve mentioned the "current" or "active" directory. There’s
nothing esoteric about this; the current directory is simply the default directory that an
application will access. Until a different directory has been specified, the current
directory normally will be the directory where the application was launched.

In addition to the DirGet function used to return the current drive/directory specification
(demonstrated in the CallFileList.wbt utility, discussed earlier in the chapter), there are
three other functions that return drive/directory specifications: DirHome, DirWindows and
DirScript.

The DirHome function is a specialized function returning the directory where the WIL
interpreter’s executable files are located. This information is actually stored in the system
registry when WinBatch is installed. The usefulness of this data is a little uncertain since,
to be perfectly honest, we can’t think of many reasons for needing this data while
executing an application.

215

Introduction to Programming

The DirWindows function is similar to DirHome but returns either the specification for the
Windows directory or the Windows\System directory, either of which may occasionally
be required by applications. For example, suppose that you’ve written a WinBatch utility
that is used to install another WinBatch application or applications. The programs you are
installing, however, may need to have one (or more) .DLLs, such as WBD__44I.DLL,
copied as part of the installation. Although .DLLs can be located in the same directory as
the application, ideally these – and any Extender DLLs – should be installed in the same
directory as the executable file (.EXE).

To find the Windows directory, DirWindows is called as:

sWindowsDirectory = DirWindows(0)

To find the Windows\System directory, the call is:

sSystemDirectory = DirWindows(1)

In both examples, the return value is a drive/path specification with the full directory
information.

The DirScript function is a convenient method of finding the directory where the
program script is located and you’ll have seen this in several of the demo scripts in the
form: DirChange(DirScript()) … where the desired result is to make the current
(active) directory the same as the directory where the script is located. This is especially
critical if you are using the Call function to invoke another (external) script or executable.

If the current WinBatch script is a child program that was called with the Call() function,
this function will return the full directory path (without the filename) of the main
(calling) program.

Redefining the Default Directory

When an application is installed as a desktop icon or as a Start menu item, the
application is assigned properties that include a startup (or Start in) directory. By
default, this will be the same directory where the application is located, but you
can change the application’s startup directory. For example, right-click on your
desktop WinBatch icon (you do have WinBatch installed by now, don’t you?)
and select the Properties option from the pop-up, you’ll see the dialog for an
application shortcut:

216

Chapter 10 : Shoe Boxes and File Cabinets

You can change the Start in property to specify any directory desired and, when
WinBatch is opened, the specified directory will be the current directory used by
the WinBatch. This specification does not affect any other application and does
not prevent you from changing the directory at any time.

Getting Drive Information
For some applications, we may want to find out about both local and network drives, not
for information about what files are located where, but to discover which drives are
available and where we can find free space. WinBatch offers a half-dozen Disk…
functions. Three of these–DiskScan, DiskSize, and DiskFree — are illustrated in the Free
Disk Space.wbt program. The four remaining — DiskExist, DiskInfo, DiskVolInfo and
LogDisk — are discussed in the Windows Interface Language Help File.

The DiskScan Function
The DiskScan function is called to find out which drives are available. There are six types
of drives that we can request information about: unused drive IDs, removable (floppy)
drives, local fixed drives (hard drives), remote (network) drives, CD-ROM drives, and
RamDisk drives. The following shows the flag values used to request each drive type.

217

Introduction to Programming

Drive Types used with DiskScan

Flag Binary Return value

0 0000 0000 List of unused disk IDs

1 0000 0001 Removable (floppy, ZIP, JAZ, etc.) drives

2 0000 0010 Local (fixed) hard drives

4 0000 0100 Remote (network) drives

8 0000 1000 CD-ROM (32 bit)

16 0001 0000 RamDisk (32 bit)

32 0010 0000 Persistent non-connected drives

64 0100 0000 USB buss disk drives (W2K and later only)

Notice that the flag values are all powers of 2 rather than sequential. This allows two or
more flags to be used at the same time—what is essentially a binary OR operation (as
described in Chapter 5). However, don’t worry about remembering how to OR two
values. All that’s really required is to add the flag values as base10 numbers and to use the
sum.

Therefore, to check both local and remote drives, adding the flags 2 and 4 yields 6 (0000
0110). In the Free Disk Space.wbt demo, we call DiskScan as:

sDrives = DiskScan(6) ; 6 = 4 + 2 = Network and Local Drives

This returns a list of both local fixed drives and network drives (if any are available) as a
string with the format "A: C: D: E: F: G: H: I: J:".

With a list of the available drives, the next steps are setup and preparation:

sDrives = DiskScan(6) ; 6 = 4 + 2 = Network and Local Drives

nMax = StrLen(sDrives)

...

nDrive = 1

TotalSize = 0

TotalFree = 0

DriveReport = "Drive":@TAB:" Total":@TAB:" Free":@TAB:"%%
Free":@CRLF:@CRLF

218

Chapter 10 : Shoe Boxes and File Cabinets

The DiskSize and DiskFree Functions
Once everything is ready, a loop is initiated to extract the individual drive letters from
sDrives and then to call DiskSize and DiskFree to retrieve information on each drive.
DiskSize and DiskFree report in bytes, which is more detail than we’re likely to want, so
we begin by converting the size values to kilobytes:

While @TRUE

 NextDrive = StrSub(sDrives, nDrive, 1)

 nSize = DiskSize(NextDrive) / 1024 ; convert to kilobytes

 nFree = DiskFree(NextDrive) / 1024

For gigabyte-plus drives, even kilobytes can be awkward. The next step is to decide how
large a drive we’re dealing with—based on the total size of the drive, not the free space—
and decide whether we want to report kilobytes or megabytes:

 If nSize > 10240

 sUnit = " Mb"

 nSize = nSize / 1024.0 ; convert both to Megabytes

 nFree = nFree / 1024.0

 Else

 sUnit = " Kb"

 EndIf

Depending on the units used to report, we also want to have a corresponding label as
either "Mb" or "Kb.".

As we get the information from each individual file, we also want to track both the total
free space and the total drive sizes:

 TotalSize = TotalSize + nSize

 sSize = Int(nSize)

 Call("FormatNumber.wbt", "sSize")

 sSize = StrFixCharsL(sSize, " ", 16)

 TotalFree = TotalFree + nFree

 sFree = Int(nFree)

 Call("FormatNumber.wbt", "sFree")

 sFree = StrFixCharsL(sFree, " ", 16)

219

Introduction to Programming

The FormatNumber.wbt utility that we call here is similar to the FormatCurrency.wbt
utility introduced in Chapter 9 (see the subroutine Format_Dollar_String) to add
commas, decimal places, and a dollar sign to large numerical strings to make them more
readable. The principal differences in FormatNumber.wbt are that no dollar sign is added
and decimal places are optional.

Next, since we want to report free space as a percentage, which is more readable than
simple size information, we begin with a test to ensure that we won’t encounter a divide-
by-zero situation (which can happen when checking a CD drive that does not have a disk
in place):

 If nSize > 0

 sPercent = Int((nFree / 1.0) / (nSize * 1.0) * 100)

 sPercent = StrCat(sPercent, "%%")

 sPercent = StrFixCharsL(sPercent, " ", 8)

 Else

 sPercent = ""

 EndIf

For purposes of calculation, both nFree and nSize are multiplied by 1.0. This ensures that
the calculations are made as floating-point rather than integer operations (as discussed
in Chapter 9), even though we multiply the product by 100 and then reconvert to an
integer for display.

The remainder of the loop is mostly a matter of formatting the information retrieved and
calculated for eventual display:

 BoxText("Checking " : NextDrive : ":")

 DriveReport = StrCat(DriveReport, NextDrive, ":")

 DriveReport = StrCat(DriveReport, @TAB, sSize, sUnit)

 DriveReport = StrCat(DriveReport, @TAB, sFree, sUnit)

 DriveReport = StrCat(DriveReport, @TAB, sPercent, @CRLF)

 nDrive = nDrive + 3 ; each entry is 3 bytes long

 If nDrive > nMax then break

EndWhile

Notice that the nDrive variable, which is used to show the position of the drive identifier
letter, is incremented by 3, not by 1. Remember that each drive specification in the list
consists of three characters: the drive letter, a colon, and a separating space. (The
ItemExtract function could also be used, and you are invited to try it, but the resulting
code is somewhat more cumbersome than is actually necessary.)

220

Chapter 10 : Shoe Boxes and File Cabinets

Once we’ve stepped through the drives, all that remains is to format the information on
the totals and to present the information.

DriveReport = StrCat(DriveReport, @CRLF, sUnit, "ytes")

sTotalSize = Int(TotalSize)

Call("FormatNumber.wbt", "sTotalSize")

sTotalSize = StrFixLeft(sTotalSize, " ", 16)

n = StrLen(sTotalSize)

DriveReport = StrCat(DriveReport, @TAB, sTotalSize)

sTotalFree = Int(TotalFree)

Call("FormatNumber.wbt", "sTotalFree")

sTotalFree = StrFixCharsL(sTotalFree, " ", 16)

DriveReport = StrCat(DriveReport, @TAB, sTotalFree)

sPercent = Int((TotalFree / 1.0) / (TotalSize * 1.0) * 100)

sPercent = StrFixCharsL(sPercent, " ", 8)

DriveReport = StrCat(DriveReport, @TAB, sPercent, "%%")

BoxShut()

TotalFree = Int(TotalFree)

Call("FormatNumber.wbt", "TotalFree")

Message("Total Space Available = ":TotalFree:" ":sUnit, DriveReport)

Drop(TotalSize, TotalFree, DriveReport, Drives, NextDrive)

exit

221

Introduction to Programming

A sample report generated by the Free Disk Space demo.

Huge Numbers

With terabyte (and larger) drives available, both the DiskSize and DiskFree functions
may easily need to handle values larger than 2 Gb. By default, results larger than 2 Gb
are returned as floating point numbers but both functions now accept a flag specifying a
‘Huge number’.

‘Huge numbers’ – as discussed previously – are numbers too large to be converted to
integer values. Instead, a ‘Huge number’ is a special data type – a long decimal number
string – which can represent a number too large to be converted to an integer. ‘Huge
numbers’ cannot be modified using the standard arithmetic operations but must use the
Huge Math extender.

File Management

File operations have been introduced in several of the previous demo programs. For
example, we used file operations in the string-operation demonstrations simply because a
reliable source of string material was needed. Conversely, if we had tried to introduce
files prior to string operations, strings would have been needed to illustrate files. In short,
it is very difficult to write sample applications that use only one or two operations and
even more difficult to avoid using functions or operations until we’ve reached the
appropriate point to cover them in detail. (On the other hand, if matters were that overly
simple in the first place, there would hardly be any need for you to read this book.)

Here, we’ll discuss the various file functions provided by WinBatch. However, before
getting into the usual methods of accessing files, we’ll talk about one special function for
accessing files containing lists: the AskFileText function.

222

Chapter 10 : Shoe Boxes and File Cabinets

A Shortcut for Lists

The AskFileText function opens and reads a file—ideally a CRLF-delimited text file—
and displays the contents as a list. The display can be presented as a sorted or unsorted
list, and list selection may be limited to one item or multiple items. Following selection,
AskFileText returns the selection as a tab-delimited list.

AskFileText is called as:

AskFileText(title, filename, sort_mode, select_mode,
selection_required)

The five parameters are specified as follows:
• The title parameter is a string setting the caption title.
• The filename parameter identifies the file to be read.
• The sort_mode parameter can be either @SORTED or @UNSORTED.
• The select_mode parameter may be specified as @SINGLE or @MULTIPLE or

@EXTENDED. The @SINGLE flag limits selection to a single item; @MULTIPLE allows
selection of one or more items; @EXTENDED allows selection of multiple items by
extending selection using the shift key or the mouse.

• If the selection_required parameter (optional) is set to @TRUE, the OK button will
be grayed out until at least one item has been selected. The parameter defaults to
@FALSE.

The ShowList.wbt program calls AskFileText with a reference to the source file Phone.lst
producing the display shown here:

223

Introduction to Programming

It would be nice if there were a method to arrange this data in columns – short of
using a fixed width font and calculating string lengths – but, unfortunately, there
is no ready columnar facility available

What is done with the selection after AskFileText returns depends on the needs of your
application. This particular example is brief and uses a message box to report the results:

The practical use for the AskFileText function, however, is to allow the user to make a
selection from a list maintained in an external file. For example, suppose that we have an
application used to book rooms in a motel. Since there is a terminal in every room
(obviously, a Silicon Valley motel), once the maid has finished cleaning the room, the
maid clicks on a network utility to tell the desk that the room is ready, or maybe to report
an error or some problem. In any case, a list of ready-to-rent rooms is maintained as a
file. Then, when the desk clerk is deciding which rooms are available, AskFileText
queries the ready file and pops up the list for selection. All the clerk has to do to enter the
room number (and maybe price information and other details) in the registration is to
select a ready room with a double-click. Granted, this is a fairly trivial suggestion, but it
illustrates the principle. You can probably think of your own uses. So, let’s get on to the
more conventional file operations.

File-Operation Functions

Access to a file—whether text, data, records, or something else—always begins in the
same way: you first need to open the file. Once the file is open, data can be read from the
file or written to the file (depending on the mode the file is opened with). Then, once
you’re finished with the file, the file needs to be closed.

And that’s the short version, with three simple steps: open, use, close. However, that’s
not quite all of the story (but you expected that, didn’t you?).

Before we make things too complicated, however, there are four file access functions
which, in many cases, can simplify your file operations. These are FileGet and FileGetW
and FilePut and FilePutW.

224

Chapter 10 : Shoe Boxes and File Cabinets

The FileGet and FileGetW functions each are called with a fully qualified filename and
return the contents of the file as a string. The difference between the two is in the …W
identifier because the FileGet function returns a simple string using 16-bit characters and
the FileGetW (for Wide) converts a file into a Unicode string variable (using 16- or 32-bit
characters).

In like fashion, the FilePut and FilePutW functions write a conventional string (8-bit
characters) or a Unicode string (16- or 32-bit characters) to a file.

ANSI versus Unicode

The ANSI character set uses one byte per character to support 256 character
which encompass the complete English alphabet, a set of special control
characters and a set of primitive graphic characters. The ANSI character set,
however, is quite inadequate to provide support for even a small fraction of the
world’s languages and alphabets.

The original Unicode alphabet using a 16-bit character set provided support for
65,536 characters, enough to provide support for quite a few additional
alphabets … but still not adequate for the entire world.

Consequently, the current 32-bit Unicode has a repertoire of more than 107,000
characters covering 90 scripts or alphabets … and continues to evolve.

Now, having introduced the easy methods, let’s go back to doing file operations the hard
way … because there may be circumstances where none of the preceding four functions
are suitable for the tasks you need to accomplish.

Handling File I/O
I/O is the abbreviation for input/output. The term file I/O is almost a misnomer, since I/O
seems to imply that both input and output are simultaneous. The truth is that you can
either open a file to read the contents or open a file to write material to the file, but not
both simultaneously. And, when you open a file to write new material, there’s a second
choice: the file can be truncated on opening (emptied and any existing contents
discarded) or the file can opened for appending (to write new material to the end of the
file).

Thus, how the file will be used must to be determined before you call the FileOpen
function (but you can always close a file and reopen it again). After calling FileOpen, you
can use the FileRead, FileWrite, or FileClose function.

The specified file must be a text file containing lines of text terminated by the carriage
return/line feed (CRLF) characters. Within this limitation, the text contained in the file
may be plain text, delimited data or numbers, or whatever. For files that contain binary
data, you must use other functions, as discussed briefly in the "Binary File Operations"
section later in this chapter.

225

Introduction to Programming

The FileOpen Function
The FileOpen function is used to open standard ASCII/ANSI (only) files for reading,
writing or appending. FileOpen is called with two parameters:

• The file name parameter can be any qualified file specification: either a name and
extension or the file name and extension with a full drive path specification or a relative
drive path specification.

• The mode parameter must be either "READ", "WRITE", or "APPEND", depending on the
desired mode of operation.

In response, FileOpen returns a handle to the file, which is an integer value that
temporarily identifies the file. The value returned will be zero if the file cannot be
opened. The returned file handle will remain valid until a FileClose operation is
executed.

WinBatch allows a maximum of 128 files to be opened at any one time.

In the PhoneList.wbt program, the first file access is performed as:

hFile = FileOpen(sDataFile, "READ")

The hFile variable is used in subsequent operations until the file is closed. After that
point, another FileOpen is required before any further access—a read, a write, or an
append operation—can be performed.

The FileRead Function
The FileRead function is used to return (read) material from a file. FileRead is called with
one parameter: the file handle supplied by a FileOpen operation. It returns a string of data
from the file, ending when a CRLF character is read or when the end of the file (EOF) is
reached.

Each subsequent FileRead operation reads another line of text, from the point where the
previous read concluded, until the end of the file is found. When a FileRead operation
comes to the end of a file, the returned string will be "*EOF*". In the PhoneList.wbt
demo, the contents of the phone list data file are read as:

While @TRUE

 sLineIn = FileRead(hFile)

 If(sLineIn == "*EOF*") then break

 listPhone = ItemInsert(sLineIn, -1, listPhone, @CR)

 nCount = nCount + 1

EndWhile

FileClose(hFile) ; Close the input file

226

Chapter 10 : Shoe Boxes and File Cabinets

When FileRead returns "*EOF*", the break instruction breaks us out of the loop and takes
us to the FileClose operation. Since we’re finished reading the file, there’s no point in
keeping the file open. It’s always safest to close a file and reopen it later than to try to
keep the file opened indefinitely.

Once we’ve read the data file, the next step is to parse the material and display it for use
(operations similar to the ones you’ve seen in previous examples):

When the user selects a name from the list (left), PhoneList.wbt displays the full record
for the selection in the fields at the right. The user can also click the Clear button to clear
the current display, enter a new name and contact information, then click the Save New
button to save the entry as a new addition. When an entry is saved, a check is made
against the existing entries and, if a match is found, the old entry is deleted before the
new record is written.

Notice that in the PhoneList.wbt demo, no provision appears in the dialog to
simply delete an entry. This is left as an exercise for the reader. Here’s one hint:
the mechanisms are already in place … all you need to do is figure out how to
call them.

The FileWrite Function
As a general rule, any time you want to make a change to a file, the original file is erased
(or renamed as a backup), and the file is rewritten with the new or changed material. In
the PhoneList.wbt program, we dispense with keeping a backup version of the data. To
make a change to the file, such as deleting an existing record, we will open the Phone.lst
file for writing, an operation which truncates (erases) the existing file.

After deleting the old record from listPhone, which is done in memory, the file is opened
as follows (see the :Delete_Entry subroutine in PhoneList.wbt):

:Delete_Entry

 listPhone = ItemRemove(nSelect, listPhone, @CR)

 hFile = FileOpen(sDataFile, "WRITE")

227

Introduction to Programming

 For i = 1 to ItemCount(listPhone, @CR)

 sTemp = ItemExtract(i, listPhone, @CR)

 FileWrite(hFile, sTemp)

 Next

 FileClose(hFile) ; close the input file

return

As each line is extracted from listPhone, it is written to the file using FileWrite, which
automatically adds its own CRLF character pair to the end of the line.

We can use the FileWrite function in another fashion as well. If we open the output file
using the "APPEND" mode, the existing file is not truncated, but the file pointer—the
location within the file where material will be written—is set to the end of the file so that
the new material is added to the present data (see the :Add_Entry subroutine
in PhoneList.wbt):

:Add_Entry

 hFile = FileOpen(sDataFile, "APPEND")

 FileWrite(hFile, sNewEntry)

 FileClose(hFile) ; close the input file

 listPhone = ItemInsert(sNewEntry, -1, listPhone, @CR)

 listPhone = ItemSort(listPhone, @CR)

return

The FileClose Function
The final standard operation is to close the file, as shown in all the previous file-operation
examples. The FileClose function requires only one parameter: the file handle returned
by the FileOpen function.

Remember that once FileClose has been invoked, the file handle used as a
parameter is no longer valid and will produce an error if used further.

Manipulating Files
WinBatch includes several operations for manipulating existing files. These include the
FileAppend, FileMove, FileCompare, FileCopy, and FileDelete functions.

The FileAppend Function
The FileAppend function should not be confused with opening a file in "APPEND" mode
and using the FileWrite function to add material to the file. Rather, the FileAppend
function is used to combine one or more files into a single file. The original source files
are not altered by the FileAppend operation. FileAppend is called with two parameters:

228

Chapter 10 : Shoe Boxes and File Cabinets

• The source list parameter is a tab-delimited list containing one or more file names (which
may include wildcard specifications).

• The destination is a file name where the concatenated data should be written. If the
destination file exists, the material will be added to the end of the file; if the destination
does not exist, it will be created.

The FileCopy Function
The FileCopy function is used to copy one or more files to a new location and, optionally,
with a new file name. FileCopy is called as:

FileCopy(source_list, destination, warning_flag)

The three parameters are specified as follows:
• The source list parameter is a tab-delimited list containing one or more file names (which

may include wildcard specifications).
• The destination parameter can be either a drive/path specification or a file name or file

mask to rename the files.
• The warning flag parameter is either @TRUE if a warning is requested before any existing

file(s) are overwritten or @FALSE for no warning.

The FileMove Function
The FileMove function operates in the same fashion as FileCopy except that the original
files are deleted. FileMove is called as:

FileMove(source_list, destination, warning_flag)

Note that these parameters are the same as those used by FileCopy.

In fact, the FileMove function performs two different tasks depending on the
source and destination locations. If the move is between locations on a single
drive, the actual operation does not require copying the files but only changing
the directory information. If the move is between locations of different drives,
the files are copied to the destination and then deleted from the source.

The FileRename Function
The FileRename function allows renaming a file or a group of files. It is called as:

FileRename(source_list, destination)

The two parameters are specified as follows:

229

Introduction to Programming

• The source list parameter is a tab-delimited list containing one or more file names (which
may include wildcard specifications).

• The destination parameter may also include a wildcard specification and operates in the
same fashion as the DOS REName command.

The FileRename function, unlike the FileMove function, cannot reassign the file location.

The FileCompare Function
The FileCompare function is called with the names of two files and compares the file
contents, returning an integer value to report the results. FileCompare is called as:

nResult = FileCompare(filename1, filename2)

FileCompare returns the following result codes:

0 The contents of the two files are identical
1 The files are the same size but the contents are different and the first file is

newer
-1 The files are the same size but the contents are different and the second file is

newer
2 The files are different in size and contents and the first file is newer

-2 The files are different in size and contents and the second file is newer
3 The second file cannot be found

-3 The first file cannot be found
4 Neither file can be found

The FileDelete Function
The FileDelete function is used to delete one (or more) files. FileDelete is called with a
tab-delimited list of files to be deleted. The list may include any valid (DOS) wildcard
specifications.

Additional File Functions
In addition to the file functions already discussed, WinBatch provides a variety of
specialized functions to parse file names, locate files, handle file attributes, retrieve file
size information, and a few miscellaneous operations. The FilePath, FileAttrGet,
FileAttrSet, FileTimeGet, and FileTimeTouch functions are demonstrated in
the FileAttr.wbt program

230

Chapter 10 : Shoe Boxes and File Cabinets

The file functions are listed with brief descriptions.

Specialized File Functions

Function Description

Drive/Path/Name/Extension

FileExtension Returns the extension from a file name

FileFullName Returns a fully qualified file name including the drive and
path specification

FilePath Returns the path portion of a fully qualified file name

FileRoot Returns the root portion of a file name (removes the file
extension)

File I/O Operations

FileGet / FileGetW Returns the contents of a file as a string

FilePut / FilePutW Writes a string to a file

ArrayFileGet Converts a file to a one-dimensional array

ArrayFilePut Writes a one-dimensional array to a file

ArrayFileGetCsv Converts a comma separated value (CSV) file to a two-
dimensional array.

ArrayFilePutCsv Writes a two-dimensional array to a comma separated value
(CSV) file.

Locating Files

FileLocate Locates a file in the current directory or along the DOS path

FileItemize Returns a tab-delimited list of files matching a wildcard

231

Introduction to Programming

specification

File Attributes and Size

FileAttrGet Retrieves the attribute flags for a file

FileAttrSet Sets attribute flags for a file

FileSize Returns the total size for a file (or group of files)

Date/Time

FileTimeCode Returns a file timestamp in a machine-readable format (a
32-bit integer)

FileTimeGet Returns a file timestamp in a human-readable format (date
and time)

FileTimeSet Sets the timestamp for one or more files

FileTimeTouch Sets the timestamp for one or more files to the current time

FileYmdHms Returns a file timestamp in the ymdhms date/time format

Miscellaneous

FileVerInfo Returns a version resource string (.EXE or .DLL files only)

FileMapName Provides a new file name, such as a .BAK file, based on the
original file name.

Binary File Operations

All of the file operations discussed so far involve text files (ASCII/ANSI standard files),
but not all files are text-based. For example, neither image files nor sound (.WAV) files
can be treated as text files. Also, applications often create files using specialized formats
that contain nontext material. Collectively, nontext-based files of all types are referred to
as binary files.

The binary file and binary data functions—beginning with BinaryAlloc and ranging
through BinaryIndex and BinaryRead to end with BinaryXor—include 44 separate
operations.

Be warned that binary operations require the program to carefully and correctly manage
memory allocation and deallocation for all binary objects and operations. This single
factor probably causes more problems than any other aspect of programming.

This caveat offered, here is a simple example of a binary file operation (Binary.wbt):

; This example edits the Config.sys file

232

Chapter 10 : Shoe Boxes and File Cabinets

; by adding a new line to the bottom of the file.

fs = FileSize("C:\CONFIG.SYS")

; Allocate a buffer the size of your file + 100 bytes.

binbuf = BinaryAlloc(fs+100)

If binbuf == 0

 Message("Error", "BinaryAlloc Failed")

Else

 ; Read the file into the buffer.

 BinaryRead(binbuf, "C:\CONFIG.SYS")

 ; Append a line to the end of the file in buffer.

 BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")

 ; Write modified file back to the file from the buffer.

 BinaryWrite(binbuf, "C:\CONFIG.SYS")

 binbuf = BinaryFree(binbuf)

EndIf

Message("BinaryAlloc", "Done.")

exit

Further details on these functions can be found in the WIL Help files. Binary file
operations are not an introductory topic and can easily require a book (or a
major portion of one) of their own for coverage.

Summary

In this chapter, we’ve covered a variety of disk and file operations, beginning by showing
you how to manage (and identify) the system drives and, most important, how to read and
walk through directory information using a custom directory utility.

Then, after showing you something of the inside workings of directory and file access,
you were introduced to the easy way: using the AskFileName function to display the
Common File Dialog. And, no, this was not a sadistic approach, showing you the hard
way first. The reasoning was that it can be very useful to understand how things work
from the ground up before saying "hey, we also have an elevator."

Then, having shown you how to select directories and files from any application and after
introducing a few of the more specialized directory functions, the next topic was getting
extended information from drives including type, capacity, and free space.

The next topic introduced was file management. The most used functions in file access
are reading and writing, which are demonstrated in the PhoneList.wbt program. We also
discussed a wide variety of other file access and management functions.

233

Introduction to Programming

234

We concluded with a brief mention of the advanced binary file operations.

In Chapter 11, we’re going to move on to a new topic: building windows and managing
application windows

Chapter 11 : Windows and GUI Operations

CHAPTER 11 : WINDOWS AND GUI OPERATIONS
PAINTS, PENS, AND WINDOW BOXES

graphical user interface – Abbreviated GUI, pronounced "gooey." A graphics-
based user interface that allows users to select files, programs, or commands by
pointing to pictorial representations on the screen rather than typing long,
complex commands from a command prompt.

window – In a graphical user interface, a rectangular portion of the screen that
acts as a viewing area for application programs.

Categorizing a window as an element of a graphical user interface (GUI) is something of
a misnomer, since it was perfectly possible (and practical) to use windows in a DOS
(text) environment. Furthermore, before the advent of GUI-based operating systems such
as Windows, many text applications used windows in much the same fashion as current
applications: to present lists, directories, or other material for selection; to pop up
messages; or to display graphical information in various forms.

For our present purposes, however, we will be using windows (also called boxes) in the
Windows GUI environment. The WinBatch functions used to present a graphical
interface are identified as Box functions.

The word windows (lowercase) should not be confused with Windows
(uppercase), which is Microsoft’s trademark for its version of a GUI. And, even
though WinBatch is a language for Windows™, the term window remains
operating-system independent and applies to any GUI operating system or even
to a non-GUI, text-based display.

Creating a Window

Back in Chapter 2, we introduced the basics of writing an application by creating a
simple program titled Hello World.wbt. Now, for our graphics window version, we’ll
create a new program with the title Hello Windows.wbt.

We begin the window creation (after the color-value definitions, which are explained
later in this chapter) with a set of window identifiers and one button identifier:
;==

; Window identifiers

;==

mainID = 1 ; requires IDs less than 9

drawID = 2

noteID = 3

235

Introduction to Programming

;==

; Button identifiers

;==

bExit = 1

The window identifiers require values less than 9. There is also a limit of eight windows,
including the top-level or main window that an application can open at any one time. The
top-level window always has an identifier value of 1.

We could simply use the values rather than the identifiers, but the identifiers are much
easier to remember.

The next step is to provide a generic initialization:

;==

; Generic Initialization

; allows windows to exit without warning (1)

; + quiet termination (4)

;==

IntControl(12, 5, 0, 0, 0)

The IntControl function is actually a large group of special-purpose Internal Control
functions. The first parameter, which is 12 in this case, identifies the control to invoke.
The subsequent parameters vary depending on the control used. In this case, the
IntControl function is used to instruct WIL (or its parent application) how to handle
termination of the program by the user. The second argument, 5, is actually a
combination of two values (1+4), which include one Exit Windows Group code (1 allows
Windows to be exited without warning) and one Terminate Group code (4 allows quiet
termination). The IntControl functions are discussed further in Chapter 13.

Following this minimal initialization, the next step is to create the top-level window:

;==

; Creates the top-level Window

;==

BoxesUp("100, 100, 900, 900", @NORMAL)

TimeDelay(1)

The BoxesUp function is called with two parameters. The first argument is a list
containing coordinates that set the window’s position on the screen—left, top, right, and

236

Chapter 11 : Windows and GUI Operations

bottom—and establish the window’s size (800x800). The second argument is the show
mode, which can be one of the following:

@NORMAL The window is displayed at the size and position specified.

@ICON The window appears minimized (as an icon).

@ZOOMED The window is maximized (zoomed) to the full-screen size.

@HIDDEN The window does not appear on the screen even though the application
continues to function.

Although we did not specify a window identifier, this initial, top-level window always
has a window ID of 1, corresponding to the mainID defined at the beginning of the
program.

0 If you are running a system with a small display, such as 640x480, you’ll
want to change the coordinates in the Hello Windows.wbt program to fit
your system’s display.

The Hello Windows.wbt program uses a series of TimeDelay functions to pause execution
after each step to allow you to see the results after each set of instructions. The initial
window created by BoxesUp is shown below.

An initial window display

As you can see, this appears as a blank window, consisting of a frame (the window
outline), the window title bar, and the window-control buttons. However, there is actually
quite a lot of application provided by a single line of code. The window can be resized
(either by using the minimize or maximize buttons or by dragging the frame),
repositioned (by clicking and dragging the title bar), and terminated (using the close
button).

To liven up our blank window, next we add a shaded background:

237

Introduction to Programming

BoxColor(mainID, BLACK, 7) ; third param sets shaded background

The BoxColor function’s first parameter, mainID, is the window identifier. The second
parameter, BLACK, sets the normal background color for the window. In this case,
however, the third parameter, 7, overrides the background color setting by specifying a
wash, or gradient, background color.

The argument BLACK is one of the colors we have predefined as an RGB (red-
green-blue) value. Color values and color specifications will be discussed in a
moment.

The wash color specification can be any of eight values:

0 No wash (uses background color specified)

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

Simply specifying a background color—whether wash or solid—is only part of the
process of painting the window. Or, more accurately, setting a color does nothing to paint
the window. The next requirement is to actually perform the paint operation using the
BoxDrawRect function:

BoxDrawRect(mainID, "0, 0, 1000, 1000", 2) ; size in logical units

The BoxDrawRect function is called with three arguments: the window ID, the coordinates
to paint, and a style parameter. The coordinate argument, "0, 0, 1000, 1000", specifies
the entire rectangle (window coordinates are discussed in the next section). The style
argument 2 calls for a filled rectangle without a border. Four rectangle styles are
supported:

0 Border only, unfilled

1 Filled rectangle with border

2 Filled rectangle without border

238

Chapter 11 : Windows and GUI Operations

3 Transparent circle/rectangle with border.

If a border is selected, the border is drawn using the color specified by the BoxPen
function.

Since a wash color setting was selected in the BoxColor function, the wash background
runs from black at the top of the window to the color selected by the wash code at the
bottom, as shown below.

Filling the window with a wash background

Colors and Color Codes

Colors, when working with colored lights such as CRT (cathode-ray tube) or
LCD (liquid crystal display) panels generate, are composed of combinations of
three primary colors: red, green, and blue. (Printed colors, which rely on dyes
absorbing portions of the white light, produce colors by combining the
complementary tints cyan, magenta, and yellow and adding black to produce
darker hues—the CMYK color system.)

If we combine red and green in equal intensities, we produce yellow. Likewise,
combining red and blue produces purple (magenta); combining blue and green
produces cyan. Combining red, blue, and green gives us white. The absence of
all three produces black. All other shades are created by varying the proportions
of these three colors.

To specify a particular color using the RGB color system, the intensity of each
component is identified as an eight-bit value in the range 0 through 255, creating
an RGB color triplet. In WinBatch, these color specifications are written as
comma-delimited strings with the form "rrr,ggg,bbb". In the Hello
Windows.wbt program (and in the derived demo programs), a series of color
specifications have been defined as:

;====== gray scale ========

BLACK = " 0, 0, 0"

239

Introduction to Programming

DKGRAY = " 64, 64, 64"

GRAY = "128, 128, 128"

LTGRAY = "192, 192, 192"

WHITE = "255, 255, 255"

These first five color specifications range from black to white as a rudimentary
gray-scale. Since the red, green, and blue levels for each are equal, each of these
"colors" is simply an increasing level of white light.

The next six colors give us a dark palette:

;====== dark colors =======

DKBLUE = " 0, 0, 128"

DKGREEN = " 0, 160, 0"

DKRED = "128, 0, 0"

DKCYAN = " 0, 128, 128"

DKMAGENTA = "128, 0, 128"

BROWN = "128, 128, 0"

And the final six colors offer a lighter palette:

;====== light colors ======

BLUE = " 0, 0, 255"

GREEN = " 0, 255, 0"

RED = "255, 0, 0"

CYAN = " 0, 255, 255"

MAGENTA = "255, 0, 255"

YELLOW = "255, 255, 0"

We will vary these definitions in later demos, offering a better brown, for
example, by adding a little blue. In other demos, instead of relying on a
predefined palette, we will define color specifications as they are used (but still
as 24-bit RGB color triplets).

Window Coordinates

When the BoxesUp function is called to create the top-level window, or when BoxNew is
called to create a child window, the new window created has a logical size, which is
1000x1000 units by default. This is not the screen size and does not affect the window
size or position. Instead, this is the virtual size inside the window frame; that is, this
1000x1000 space is the graphical environment where drawing operations will occur, and
all subsequent operations within the window will use this coordinate system.

240

Chapter 11 : Windows and GUI Operations

0 Operations within a window do not use desktop coordinates.

Within each window, the default origin point—the 0,0 coordinate—is at the upper-left corner of
the area inside the window frame (not the frame or title bar). The 1000,1000 coordinate identifies
the lower-right corner.

You can use the BoxMapMode function to switch between the default coordinate
mapping system and a screen-based (display-size-based) system. Details on the
BoxMapMode function can be found in the online documentation.

Labeling the Window

Once we’ve filled the window with a wash color, our next step is to supply a custom
caption for the window using the BoxCaption function:

BoxCaption(mainID, "Hello Windows.wbt Demo") ; window caption

The BoxCaption function requires two parameters. As with most of the Box functions, the
first argument is the window identifier, and the second is a string supplying the desired
caption. And, if you’ll look back at the windows in the first and second figures preceding,
you’ll see that the original (default) caption has been replaced as specified.

If you run the Progress.wbt demo, you’ll see this caption change regularly to
report more than just a title.

Windows within Windows

Even with a wash color background, our window is still pretty simple. Our next
embellishments will be to create a box (window) within the main window, fill the box
with a contrasting background, give it an outer and inner border for a three-dimensional
(embossed) effect, and run a banner headline in the box.

The first step is to define the position and size of the banner box:

 rectNote = "100, 100, 900, 340" ; set the size of the banner box

Remember that we’re working in a logical display space—the client drawing area inside
the parent window—which is 1000x1000 logical units in size, regardless of the window’s
actual screen size. Thus, the coordinates provided create a border of 100 logical units on
the right, left, and top while making the window 240 units tall.

241

Introduction to Programming

This new window, however, will have its own logical coordinates and, within the
window, will also be 1000x1000 logical units.

Next, having set the size, we call the BoxNew function to create the window:

BoxNew(noteID, rectNote, 1) ; create the box

To create the initial, top-level window, the BoxesUp function was called; however, to
create child windows, the BoxNew function is needed. This function is called with a
window identifier (noteID), the coordinates (rectNote), and a style parameter (1).

The child window will not have minimize, maximize, or close buttons but, depending on
the style argument, may have a border and/or a caption bar. The accepted styles are:

0 Neither border nor caption

1 Border only

2 Both border and caption

In this case, even though the style parameter calls for a border, BoxPen has not been called
to create a pen color and style, so no border will appear. But since we plan to draw a
custom border for a 3-D style, it really doesn’t matter at this point.

Before drawing the borders, we need to fill in the background:

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill banner box with background color

This time, no wash (gradient) style was specified, so the BoxDrawRect function simply
fills the box with light gray.

Then, after filling in the background, the next step is to set up to draw the outline around
the entire box, beginning by defining a pen width and coordinates for the lines:

penWidthA = 20 ; note that all units are

line1A = " 0, 0, 1000, 0" ; logical units relative to

line2A = "1000, 1000, 1000, 0" ; the notebox which (by default)

line3A = " 0, 1000, 1000, 1000" ; has a logical size of

line4A = " 0, 0, 0, 1000" ; 1000 x 1000 units

Although these coordinates take the same form as rectangular coordinates, for a line, you
should think of these as two x,y pairs identifying the beginning and end positions. Thus,
line1A specifies a beginning position at 0,0 (left, top) and an end position at 1000,0
(right, top), forming a line along the top of the box (window). In like fashion, line2A

242

Chapter 11 : Windows and GUI Operations

runs along the right side (from bottom to top), line3A runs along the bottom (from left to
right), and line4A runs along the left (top to bottom).

Finally, after defining the coordinates, a white pen is selected to draw the top and left
borders; then a gray pen is selected for the right and bottom:

BoxPen(noteID, WHITE, penWidthA) ; line color top and left

BoxDrawLine(noteID, line1A) ; top

BoxDrawLine(noteID, line4A) ; left

BoxPen(noteID, GRAY, penWidthA) ; line color bottom and right

BoxDrawLine(noteID, line2A) ; right

BoxDrawLine(noteID, line3A) ; bottom

The inner outline is defined and drawn in the same fashion, except that the coordinates
are moved in and the gray and white pens reversed:

penWidthB = 10

line1B = " 40, 150, 960, 150" ; top

line2B = " 960, 840, 960, 150" ; right

line3B = " 40, 840, 960, 840" ; bottom

line4B = " 40, 150, 40, 840" ; left

BoxPen(noteID, WHITE, penWidthB)

BoxDrawLine(noteID, line2B) ; right

BoxDrawLine(noteID, line3B) ; bottom

BoxPen(noteID, GRAY, penWidthB)

BoxDrawLine(noteID, line1B) ; top

BoxDrawLine(noteID, line4B) ; left

At this point, the result should look something like the image shown following.

243

Introduction to Programming

Adding an embossed banner window

Displaying Text

The BoxTextFont function sets the font that will be used with the current window and
controls all the text displayed in this window (but not other windows) until another font
selection is made.

Now that we’ve embossed the window with two sets of borders, it’s time to put a text
message in the window. For this task, we start by defining a font height (font size) as 400
logical units, or four-tenths of the window height (1000 logical units). Then we call the
BoxTextFont function:

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set headline font

The BoxTextFont function is called with the window identifier (noteID), the name of the
typeface desired (Arial), the font height (relative to the window), a style flag, and,
optionally, a pitch/family argument (since we’ve named the typeface).

The default font height is 100, or one-tenth of the window size.

Font Styles
The font style argument consists of three sets of values, which are added together to
create a single argument. The possible values are:

0 Default

1–99 Weight

 40 Normal

 70 Bold

100 Italics

1000 Underlined

For example, the combined value 170 specifies bold (70) and italic (100) for a bold-italic
font. In like fashion, a value of 1170 would produce bold-italic with underlining.

Variations on weight beyond normal and bold may or may not be supported by
your version of Windows. Experimentation is recommended.

244

Chapter 11 : Windows and GUI Operations

Pitch and Family
When a typeface has been specified using the font parameter, the pitch and typeface
family arguments are ignored and do not override the font selection. The pitch and family
specifications can be OR’d (using the | operator) or simply added together. However,
only one pitch and one family identifier should be used.

Pitch can be identified as:

0 Default

1 Fixed pitch (fixed-character width, such as Courier)

2 Variable pitch (most fonts, including Times-Roman, Arial, etc.)

The font family – the typeface group – can be selected from:

0 Default

16 Roman (Times-Roman, Century Schoolbook, etc.)

32 Swiss (Arial, Helvetica, Swiss, etc.)

48 Modern (Pica, Elite, Courier, etc.)

64 Script

80 Decorative (Old English, etc.)

The variety of fonts selectable using the pitch and family flags are demonstrated in
the Text Fonts.wbt program, discussed later in this chapter.

To examine the fonts installed on your system, open the Control Panel and click
on the Fonts folder, then click on any of the listed fonts to open a display
showing a sample of the typeface. (Unfortunately, the font family and pitch are
not identified.)

Displaying the Message
Now that a font (typeface) and size specification have been set, there are two minor tasks
left before displaying the message: selecting a text color and setting a rectangle for the
message display. To select a text color, BoxTextColor is called with one of the predefined
color (RGB) specifications, and the selection becomes the default text color for the
window. Then we call BoxDrawText to display the text:

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; creates the headline text - this line can be copied

; anywhere in the program where the headline needs to be changed

245

Introduction to Programming

BoxDrawText(noteID, rectNoteText, "Hello Windows", 1, 4)

The BoxDrawText function is called with the window identifier, the bounding rectangle,
the text string to display, and erase and alignment flags.

The bounding rectangle does not set boundaries for where the text should appear but does
supply boundaries for alignment and for word wrap. If the font size is too large or if the
text is too long, the displayed text may extended beyond the boundary rectangle but will
not extend beyond the current window.

The erase flag can be either @TRUE (or 1) if the background should be cleared before
writing the text or @FALSE (or 0) if any background information should be left untouched.
In this example and in most cases, the erase flag is @TRUE so that everything within the
bounding rectangle (except the background color) is erased before writing the new text.
(In the Text Fonts.wbt demo, discussed later, the erase flag is set to @FALSE so that the
background information remains as is while the new text is displayed.)

The alignment argument determines how the text is aligned relative to the bounding
rectangle. The alignment argument is a bit flag, which means that the individual flags can
be OR’d together (or added) to combine two or more settings. Alignment flag values can
be:

0 Left justified

1 Centered horizontally

2 Right justified

4 Centered vertically within the bounding rectangle

8 Bottom justified (single line only)

16 Long lines wrapped (broken to fit the width of the bounding
rectangle)

32 Font adjusted to fill the width of the boundary rectangle (single line
only)

64 Right-justify text by adding space between words

128 Clip (truncate) text if it doesn't fit within specified rectangle

This BoxDrawText instruction can be copied anywhere in the program where the
banner text needs to change. Because of the window identifier, new text can be
entered without redefining the window, text color, font styles, or other
information.

After displaying the banner information, our window looks like the one shown following.

246

Chapter 11 : Windows and GUI Operations

Displaying the banner text

Now that we’ve displayed the banner in its own box, we also want to display a message
in the main window. We’ve set the font and color information for the child window
(identified as noteID). Now we need to do the same for the main window (mainID):

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font

BoxTextColor(mainID, YELLOW) ; initial font color

BoxDrawText(mainID, "10, 500, 990, 600", "Now, this wasn't too
difficult, was it?", 0, 1 | 4)

Here, the bounding rectangle is set across the center of the main window, and the
horizontal and vertical centering flags are specified so that the displayed message will be
centered in the main window, as shown below.

Adding a message in the main window

Adding Buttons

Before we move on, there’s one more feature that we want to add to this window: an Exit
button. Adding a button is quite easy. All that’s required is a call to the BoxButtonDraw
function:

247

Introduction to Programming

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

Here, the first parameter, mainID, identifies the window where the button will appear. The
final parameter, as rectangular coordinates, provides the button’s position and size. The
third argument provides the button’s text. Including the ampersand (&) makes the
following character the hotkey for the button. In this example, pressing Ctrl+X will
perform the same function as clicking on the button.

The second argument, bExit, requires a bit of explanation. The second argument is the
button identifier; when more than one button is displayed, this identifies which button
was pressed. In this example, bExit was defined with a value of 1. In later examples,
we’ll have several buttons. It is best to ensure that groups of buttons begin with 1 and that
they are numbered sequentially.

Since we only have only one button in this example, all that we need to do is call
BoxButtonWait, which simply waits for a button to be pressed. Then we can exit.

BoxButtonWait()

exit

Finished, the Hello Windows.wbt program appears thus:

Adding an Exit button

A Quick Review

While this concludes our discussion of the Hello Windows.wbt program, we still have a
variety of other Box functions to discuss. Thus far, you have seen how to create a top-
level window (box) and a child window, choose colors, draw simple lines, create a simple
text message, and add a button to the window.

These are, of course, all important basics, but these are also only a few of the operations
we can do with windows. Next, we’ll take another look at colors. Then we’ll explore

248

Chapter 11 : Windows and GUI Operations

various drawing and mouse operations before taking a further shot at what we can do
with fonts.

More About Colors

In the Hello Windows.wbt demo, a palette of colors was defined, although these colors
were not really used. Now, in the Colors.wbt demo, we’ll modify this original palette
slightly (to improve the brown entry) and display these as color blocks. At the same time,
we’ll use multiple window buttons to select different sets of colors for display.

For another example of multiple buttons, see the Buttons.wbt program.

As a first step, we’ll redefine the palette entries as COLORnn and we’ll change the brown
color definition from 128,128,0 (a dark gold) to 128,96,48, which produces something
closer to a realistic brown. The complete palette definition appears as:

;====== gray scale ========

; -R- -G- -B-

COLOR1 = " 0, 0, 0" ; Black

COLOR2 = " 64, 64, 64" ; Dark Gray

COLOR3 = "128, 128, 128" ; Gray

COLOR4 = "192, 192, 192" ; Light Gray

COLOR5 = "236, 236, 236" ; Off-White

COLOR6 = "255, 255, 255" ; White

;====== dark colors =======

; -R- -G- -B-

COLOR7 = " 0, 0, 128" ; Dark Blue

COLOR8 = " 0, 160, 0" ; Dark Green

COLOR9 = "128, 0, 0" ; Dark Red

COLOR10 = " 0, 128, 128" ; Dark Cyan

COLOR11 = "128, 0, 128" ; Dark Magenta

COLOR12 = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

COLOR13 = " 0, 0, 255" ; Blue

COLOR14 = " 0, 255, 0" ; Green

COLOR15 = "255, 0, 0" ; Red

249

Introduction to Programming

COLOR16 = " 0, 255, 255" ; Cyan

COLOR17 = "255, 0, 255" ; Magenta

COLOR18 = "255, 255, 0" ; Yellow

These are grouped at gray-scale, dark colors, and light colors because the intent is to
display six of these at a time.

We’ll also create a list with the names of the colors:

listColors = "Black,Dark Gray,Gray,Light Gray,Off-White,White,Dark
Blue,Dark Green,Dark Red,Dark Cyan,Dark
Magenta,Brown,Blue,Green,Red,Cyan,Magenta,Yellow"

We also need a window identifier (for convenience) and six rectangle areas to paint:

mainID = 1 ; requires IDs less than 9

rectColor1 = " 50, 100, 330, 400"

rectColor2 = "360, 100, 640, 400"

rectColor3 = "670, 100, 950, 400"

rectColor4 = " 50, 450, 330, 750"

rectColor5 = "360, 450, 640, 750"

rectColor6 = "670, 450, 950, 750"

The color rectangles are defined as two rows of three positioned in the top portion of the
window.

Last, we want four identifiers for the buttons: three to select palettes and one for the Exit
button.

bExit = 1

bGrays = 2

bDark = 3

bLight = 4

In theory, we could assign any button identifiers desired, but a set of sequential values is
much easier to handle and, in some cases, appears to function more cleanly.

With these provisions, we’re ready to create the window and start operations, thus:

IntControl(12, 5, 0, 0, 0)

BoxesUp("100, 100, 900, 900", @NORMAL)

nOfs = 0

250

Chapter 11 : Windows and GUI Operations

While @TRUE

 BoxDataClear(mainID, "TOP")

 BoxColor(mainID, COLOR14, 4) ; third param sets shaded background

 BoxCaption(mainID, "Colors.wbt Demo") ; window caption

 BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size logical units

This part of the code is essentially the same as what was demonstrated in the Hello
Windows.wbt program. Here, however, instead of a single Exit button, we’re going to
create four buttons:

BoxButtonDraw(mainID, bGrays, "Gray Scale", "100, 820, 250, 890")

BoxButtonDraw(mainID, bDark, "Dark Colors", "275, 820, 425, 890")

BoxButtonDraw(mainID, bLight, "Light Colors","450, 820, 600, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

The buttons are positioned across the bottom of the window.

The next step is to select a font (to label the color blocks) and to decide what text color
will show best. Since the nOfs variable is used to select which group of colors will be
displayed, we can also use this to select the appropriate text color:
If nOfs == 12 then textColor = 1

If nOfs == 6 then textColor = 6

BoxTextFont(mainID, "Times", 40, 40, 0 | 0) ; initial font info

For i = 1 to 6

 nColor = i + nOfs ; box color

 If nOfs == 0 then textColor = 7 – i ; text color for gray scale

 label = ItemExtract(nColor, listColors, ",")

 label = StrCat(@CRLF, " ", label, @CRLF, @TAB, COLOR%nColor%)

 BoxColor(mainID, COLOR%nColor%, 0) ; background color

 BoxPen(mainID, COLOR%textColor%, 5) ; outline color

 BoxDrawRect(mainID, rectColor%i%, 1) ; fill banner box with
background color

 BoxTextColor(mainID, COLOR%textColor%)

 BoxDrawText(mainID, rectColor%i%, label, 0, 0)

Next

If the color palette displayed will be the dark colors, the white palette entry (COLOR6)
provides the best contrast. Likewise, for the light colors, the black palette entry (COLOR1)
is optimum.

251

Introduction to Programming

For the gray-scale colors, however, neither white nor black will show against all of the
colors, so our choice is to use the inverse of the background color as the text color. This
produces white text against a black background, off-white against dark gray, and so forth
until we reach black against a white background. Since this requires the text color to
change for each rectangle, this part is done within the same for loop used to draw the
color rectangles. Also, we want to list the appropriate text label and to show the RGB
color specification for each.

After setting up the caption information, drawing the color rectangle with an outline in
the same color as is used for the text and writing the caption are fairly simple tasks:

Finally, having drawn the rectangles to show the colors, it is time to wait for a button to
be pressed (clicked):

iBox = 0

BoxButtonWait()

While we can use the BoxButtonWait function to wait for a button event, we also need a
means to decide which button was pressed. Once a button has been pressed, we poll the
various buttons to inquire which button generated the event:

 While iBox == 0

 For x = 1 to 4 ; sequential buttons required

 if BoxButtonStat(mainID, x) then iBox = x

 Next

 EndWhile

The use of a for loop to poll the buttons imposes the need for the button identifiers to be
sequential. If the buttons queried in the routine preceding are not sequentially numbered,
an error will occur when the BoxButtonStat function is called with a value of x that does
not have a corresponding button defined.

Next, assuming that iBox actually identifies one of the buttons, a simple switch statement
gives us the appropriate response for each:

 If iBox

 Switch iBox

 case bExit

 exit

 break

If the Exit button is pressed, then the program simply exits:

252

Chapter 11 : Windows and GUI Operations

 case bGrays

 nOfs = 0

 break

 case bDark

 nOfs = 6

 break

 case bLight

 nOfs = 12

 break

 EndSwitch

 Endif

EndWhile

exit

Pressing any of the other three buttons sets the nOfs variable as appropriate for the
selected set of colors.

The figure below shows the Colors.wbt demo with the dark color palette selected.

Displaying a set of colors

Drawing in a Window

The Colors.wbt program shows a set of predefined colors. However, most modern video
cards (and most contemporary systems) support sufficiently high color resolutions that
we can freely assign any color values desired with a reasonable expectation of the color
being correctly rendered for display.

When an application calls for a color that is not supported by the system (by the
video card and the selected resolution), the system uses the RGB color value to
map the request to the nearest supported color.

253

Introduction to Programming

In the Lines.wbt demo, RGB color specifications are generated on-the-fly to produce
color fans sweeping across the screen (see figure following). The individual lines are
drawn between start and end points, which are incremented for each step, reversing
direction when a point reaches the edge of the window. At the same time, the color value
is also changed incrementally for each step to produce lines that differ from their
neighbors but only slightly.

Drawing color fans

The keys to the color display are found in three subroutines. First, the :RANDOM_COLOR
subroutine is used to initialize the color used before falling through to the :CHECK_COLOR
subroutine:

:RANDOM_COLOR

 rVal = Int(Random(255))

 gVal = Int(Random(255))

 bVal = Int(Random(255))

As you can see, the :RANDOM_COLOR subroutine simply generates an initial RGB value (as
rVal, gVal, and bVal).

The :CHECK_COLOR routine, which follows, modifies the initial RGB value by setting the
lowest of the three values to 0, setting the highest to 255, and leaving the median value
unchanged. (Functionally, :CHECK_COLOR is simply part of the :RANDOM_COLOR subroutine
rather than a separate subroutine.)

:CHECK_COLOR

 q = Min(rVal, gVal, bVal)

 If q == rVal then rVal = 0

 If q == gVal then gVal = 0

 If q == bVal then bVal = 0

254

Chapter 11 : Windows and GUI Operations

 q = Max(rVal, gVal, bVal)

 If q == rVal then rVal = 255

 If q == gVal then gVal = 255

 If q == bVal then bVal = 255

return

Functionally, this provision sets the RGB value to something approximating a primary or
complementary hue and avoiding blacks or grays. This is only the initial color setting,
however. We’ve also set three step values—dRed, dGreen, and dBlue—which are used in
the :STEP_COLOR subroutine to adjust the color for each successive line:

:STEP_COLOR

 If(rVal >= 245) then dRed = -nColorStep

 If(rVal <= 10) then dRed = nColorStep

 rVal = rVal + dRed

 If(gVal >= 245) then dGreen = -nColorStep

 If(gVal <= 10) then dGreen = nColorStep

 gVal = gVal + dGreen

 If(bVal >= 245) then dBlue = -nColorStep

 If(bVal <= 10) then dBlue = nColorStep

 bVal = bVal + dBlue

return

The Inc Color and Dec Color buttons are used to increment and decrement
nColorStep, changing the rate at which the colors shift.

The :STEP_COLOR subroutine performs two tasks; in addition to incrementing or
decrementing each of the RGB values, the subroutine also tests to ensure that the RGB
values remain within the 0 to 255 range.

The third color-manipulation routine, :RANDOM_HUE, is called periodically to adjust how
colors change by reversing the step increment for one of the three color values, while
leaving the other two unchanged:

:RANDOM_HUE

 switch Random(3)

 case 1

 If(dRed == nColorStep)

255

Introduction to Programming

 dRed = -nColorStep

 else

 dRed = nColorStep

 EndIf

 break

 case 2

 If(dGreen == nColorStep)

 dGreen = -nColorStep

 else

 dGreen = nColorStep

 EndIf

 break

 case 3

 If(dBlue == nColorStep)

 dBlue = -nColorStep

 else

 dBlue = nColorStep

 EndIf

 break

 Endswitch

return

These three subroutines provide shifting colors without the need of a predefined palette.
Similar routines can be used in any application.

Feel free to experiment with the color routines in the Lines.wbt demo and
observe the effects on the display.

An Alternative to BoxButtonWait

In the demos we’ve discussed so far, the BoxButtonWait function is used to pause until a
button is clicked. In the Lines.wbt demo, we do not want to wait for a button event; we
want other things happening in the intervening time. Therefore, a different approach is
required.

In Lines.wbt, a while loop provides the heart of the operation. Within the while loop, a
series of tests are repeated each time around to query the button status individually.

While @TRUE

 If BoxButtonStat(drawID, bExit) == 1 then

256

Chapter 11 : Windows and GUI Operations

 …

 break

 EndIf

 If BoxButtonStat(drawID, bColorUp) == 1 then

 …

 EndIf

 If BoxButtonStat(drawID, bColorDn) == 1 then

 …

 EndIf

 BoxDataClear(drawID, "NULL")

 …

 EndWhile

As a collateral benefit, since a for loop is not being used to query the button status, this
part of the code is not going to complain if the buttons are not numbered sequentially.

The BoxDrawCircle and BoxDrawRect Functions

In addition to the BoxDrawLine function, demonstrated in the Lines.wbt program and other
window examples, WinBatch also offers the BoxDrawCircle and BoxDrawRect functions.
These are demonstrated in the Shapes.wbt program as shown here.

Drawing shapes

The Shapes.wbt program uses many of the same routines discussed in the previous demo
examples, including random color settings for each shape. The outline color for each

257

Introduction to Programming

shape (set using BoxPen) is simply the inverted RGB value used for the fill color, an easy
way of providing some contrast (if not always aesthetically pleasing).

In common with many other programming languages, both the circle and rectangle
shapes are defined by corner coordinates. Thus, BoxDrawRect is called as:

BoxDrawRect(drawID, "%boxLf%,%boxTop%,%boxRt%,%boxBtm%", 1)

The boxLf and boxTop values set the upper-left corner, and the boxRt and boxBtm values
set the lower-right corner position.

The BoxDrawCircle function is called in the same fashion, as:

BoxDrawCircle(drawID, "%boxLf%,%boxTop%,%boxRt%,%boxBtm%",1)

The difference is that this time a circle, or an oval ellipse, is drawn inside the bounding
rectangle (but, of course, without drawing the rectangle).

An example of a bounding rectangle for an ellipse is shown below:

Both BoxDrawCircle and BoxDrawRect accept a style parameter, which can be:

0 Empty (no fill) with a border

1 Filled with a border

2 Filled with no border

3 Transparent with a border

258

Chapter 11 : Windows and GUI Operations

Defining shapes by corner coordinates

It might seem that defining shapes by corner coordinates is rather unimaginative,
however corner coordinates are easily calculated and easily controlled. Some
early graphics libraries did use more flexible arrangements – including the
ability to define circles and ellipses in terms of loci and radii, allowing the major
and minor axes to lie along any angle – but these drawing functions proved to be
too complicated for most purposes (and many programmers). As a result, the
reliance on simple rectangular frames with x/y orientations has become the de
facto standard even though packages such as CAD/CAM and some of the more
elaborate drawing programs do continue to support more flexible arrangements.

Drawing Stack Management

A requirement in standard Windows applications is for the program to be prepared and
ready to redraw the entire window or any portion of the window at any time. This
requirement demands a certain structure in programming conventional applications and
adds a degree of complexity for the programmer.

In WinBatch, however, the programmer is shielded from the details and demands of a
dynamic redraw operation. Toward this end, WinBatch maintains a small database of the
Box commands requested by the application and refers to this list when Windows requests
a portion of the window to be redrawn. As a general rule, this data remains transparent to
the programmer and does not require any special provisions.

In some cases, however, the database of instructions must be actively managed by the
programmer to ensure that the application does not exceed the maximum limits of the
database. If these limits are reached, the application will terminate with a "Box Stack
Exceeded" error.

Each window belonging to an application has a separate stack and maintains a
separate list of drawing commands.

The stack limit is around 150 commands, but asking the program (and the programmer)
to keep track of how many commands were in the stack would be an onerous and
unnecessary requirement. Instead, rather than simply allowing an unexpected termination
to occur, there are provisions to clear the stack when the database becomes too full. This
can be done using the BoxDataTag and BoxDataClear functions along with the LastError
function. While it is possible to simply dump the entire stack, we may not want to clear
the entire database; instead, we may want to reserve some operations (and objects) for an
automatic redraw operation.

Partial Clearing

In practice, we can usually assume that there are objects—controls or whatever—that we
do not want to change, while others are changing constantly. The ideal is to draw the

259

Introduction to Programming

fixed, unchanging objects first and then to place a tag, using BoxDataTag, in the data
stack:

BoxDataTag(WindowID, "NULL")

The name used for the tag— "NULL" in this case—can be anything you like. Acceptable
names include "George", "Oranges", "lemons", and "tag123". (The tag "TOP" is
automatically placed at the top of the data stack and can be used at any time to clear the
entire stack.) The windowID, of course, must identify the window where the drawing
operations are taking place.

0 While multiple tags are permitted, they are not advised.

Next, after assigning the tag, the application should proceed to draw the changing objects.

The BoxUpdates function is called with a window identifier and an update flag. Supported
update flags are:

0 Suppress screen updates

1 Enable updates (default setting)

2 Catch up on updates

3 Redraw the entire box

The BoxUpdates function is rarely required.

When the stack containing previous drawing instructions is emptied, this does
not mean that the existing screen image is erased, only that these instructions
will not be repeated if a screen redraw operation is required.

Formatting Text In Windows

The sample program Text Fonts.wbt, shown in below, demonstrates how fonts and
typeface families are selected. In the top pane of the window, words from a list (courtesy
of Lewis Carroll) are displayed in a variety of fonts, colors, and sizes. In the lower pane,
five font families are shown in normal, italic, bold, and bold italic.

260

Chapter 11 : Windows and GUI Operations

The Text Fonts.wbt demo

In this instance, we don’t appear to have appropriate typefaces for the Script or
Decorative font families

Notice that the Decorative row in the Normal and Italic columns shows a quite different
typeface than what you see in the Bold and Bold Italic columns. This occurs because,
instead of requesting a specific typeface, the font selection specifies a font family with
particular characteristics. In the Decorative category, one typeface was more appropriate
for normal weight, while a second typeface was more appropriate for a bold font.

Displaying fancy fonts is interesting and attractive, but we also want to be able to do
something more with fonts (or, at least, with text) than create a colorful display. To
demonstrate a useful application, we’ll improve on the ShowList.wbt program presented
in Chapter 10. The ShowList.wbt reads the contents of the Phone.Lst file and displays the
contents in a list box. This display, however, is rather ragged—there was no ready
method of aligning the material in columns and the results were less than aesthetically
appealing.

In contrast, using the BoxDrawText function, we have the option of placing material on the
screen however we like. The PhoneListBox.wbt program, shown in following,
demonstrates not only how text can be arranged neatly, but also how the mouse
operations (discussed earlier) can be used to select an item from a formatted list.

261

Introduction to Programming

A formatted display with selection

Here, the selected item is shown by changing the display color for the item. Also, while
WinBatch does not provide a generic means of detecting a double-click event,
the PhoneListBox.wbt program watches for multiple mouse clicks within a short interval,
using a repeated mouse button event as the signal to make a selection from the list.

Thus, the first mouse click is taken as a position and the logical coordinates reported are
used, by matching the vertical position against the list display positions, to determine
which item in the list was selected.

When the list was created, each entry was positioned within specific vertical coordinates,
as shown in the following fragment from the :DISPLAYLIST subroutine:

 For i = 1 to ItemCount(listPhone, sDelimiter)

 If i == nSelect

 BoxTextColor(drawID, GREEN)

 Else

 BoxTextColor(drawID, WHITE)

 EndIf

 sTemp = ItemExtract(i, listPhone, sDelimiter)

 sName = ItemExtract(1, sTemp, @TAB)

 sPhone = ItemExtract(7, sTemp, @TAB)

 yTop = Int(nRowHeight * (i - 1))

 yBottom = yTop + nFontHeight

 BoxDrawText(drawID, "10, %yTop%, 490, %yBottom%", sName, 0, 0)

 BoxDrawText(drawID, "500, %yTop%, 990, %yBottom%", sPhone, 0,0)

 Next

Next, when a mouse button is clicked, the mouse position is retrieved, and then the
vertical position is extracted from the mouse position:

sPosition = MouseInfo(6) ; get position

nRow = ItemExtract(2, sPosition, " ")

262

Chapter 11 : Windows and GUI Operations

nSelect = Int(nRow / nRowHeight) + 1

Finally, the nRowHeight information is converted back to a row count to tell us which
entry was selected from the list.

Then, once a match has been calculated, the list is redrawn to highlight the selected item
before the program waits for a repeated mouse click to confirm the selection and display
the results.

This example is rather rough and dirty, and several aspects could be improved. For
example, when waiting for a second mouse click, the new position should be checked
against the original to find out if the mouse has moved to select a different item. Also,
while the application is simply recording mouse events, there is no assurance that the
mouse events actually occurred within the application window. These changes, as well as
a variety of other possible improvements, are left as an exercise for the reader.

For more examples of graphics operations, take a look at the Box Drawing
Demo.wbt, provided with the WinBatch install in the [Samples] subdirectory.

Finally, don’t be afraid to poke around in the code and make changes—it’s the
only way you’ll really learn to program. And it’s not like a mistake is going to
have flames coming out of your computer ... Well, maybe from your monitor ...
if you’re really good, that is.

Summary

In this chapter, we showed you how to use the WinBatch Box functions to create
windowed applications and windows within applications, how to use colors, how to draw
objects, and how to present text information in a variety of fonts.

Since this is an introductory programming book, we’ve covered all of the basics but have
not explored any of these topics in great depth. Still, with the information provided, along
with the online documentation and a little imagination, you should be able to create
virtually any program desired.

263

Introduction to Programming

264

Chapter 12 : Mousing Around

CHAPTER 12 : MOUSING AROUND
GETTING AWAY FROM THE KEYBOARD

mouse (computer) – a pointing device which functions by detecting and
reporting two-dimensional movements relative to it’s supporting surface or
movements of a trackball without surface movements. The mouse’s motion is
normally used to control the motion of a cursor on a display, providing fine
control – and an intuitive input – for a graphical user interface.

mouse movements – with the technical reverence typical of programmers (and
other geeks) the movement of a mouse has always been reported in mickies, with
the mouse resolution (how fine a movement can be recognized) referred to as
mickies-per-inch. The speed of movement, of course, is mickies-per-second.

Mouse Operations in Windows

As in most Windows applications, WinBatch programs handle most of the common
mouse operations without any special provisions on the part of the programmer. For
example, you don’t need to track the mouse position and watch for a mouse button click
to then determine where the event occurred and whether this event involved clicking on a
button object.

In other circumstances where the application does need to track the mouse, WinBatch
supplies six Mouse functions: MouseClick, MouseClickBtn, MouseCoords, MouseInfo,
MouseMove and MousePlay.

Forcing Mouse Operations
Of the six Mouse functions supplied, four allow WinBatch applications to make the mouse
appear to perform an action.

The MouseMove function moves the mouse pointer to a specified position within a window.
MouseMove is called as:

MouseMove(xPos, yPos, parent_window_name, child_window_name)

The parent and child window names are optional arguments. If the parent window name
is specified, the xPos and yPos coordinates are treated as logical coordinates relative to
the named window and based on a virtual 1000x1000 screen. Likewise, if the child
window name is specified, the coordinates are relative to this named window. If both the
child and parent window arguments are blank strings (""), xPos and yPos are treated as
the position in desktop (absolute screen) coordinates.

265

Introduction to Programming

The MouseClick function simply generates a mouse-button-click message at the current
mouse position. The MouseClick function is called with two arguments as:

MouseClick(click_type, modifier)

The click type argument can be:

@LCLICK Left mouse button click

@RCLICK Right mouse button click

@MCLICK Middle mouse button click

@LDBLCLICK Left mouse button double-click

@RDBLCLICK Right mouse button double-click

@MDBLCLICK Middle mouse button double-click

The modifier argument is optional (set to 0 if not needed) but allows key combinations to
be added to the mouse button click. Modifier values are:

@SHIFT Shift key held down

@CTRL Ctrl key held down

@LBUTTON Left mouse button held down

@RBUTTON Right mouse button held down

@MBUTTON Middle mouse button held down

The MouseClickBtn function permits emulating a mouse click on a pushbutton,
radiobutton, or checkbox. The MouseClickBtn function is called as:

MouseClickBtn(parent_window_name, child_window_name, button_text)

The button_text argument identifies the control by the text displayed on the control. If
the control or button is located in a top-level window, only the parent window name is
required, and the child window name is passed as an empty string ("").

Finally, the MousePlay function performs full range of mouse associated activities. You
can simulate drag-and-drop operations by specifying the drop location in the "X-Y-
coordinates" parameter and adding the @MPLAYLBUTTON constant to the "buttons"
parameter. This tells MousePlay to move the mouse to the position x,y with the left mouse
button down.

266

Chapter 12 : Mousing Around

You can perform a mouse button click at a specific location by using one of the button
click values in the "buttons" parameter.

MousePlay can move the mouse cursor relative to the upper left-hand corner of a window.
To do this simply place a window name in the "parent window" parameter and optionally
in the "child window" parameter. If you give MousePlay a child window name you must
give it a parent name as well. When window names are present, MousePlay considers the
upper left-hand corner of the parent or child window to be 0,0. It is, therefore, possible to
give it a negative x or y value to move the mouse cursor to the left or above the window.
If the window you specify is minimized, MousePlay will use its last un-minimized size for
calculating mouse position.

MousePlay also accepts the WIL constants @SHIFT and @CTRL in the "buttons" parameter.
You can combine these constants with a mouse button constant using the bitwise OR ('|')
operator to duplicate holding down the Shift or Control key while performing a mouse
drag-and-drop or button click.

You can use the "delay" parameter to control the amount of time MousePlay takes to
perform an action. Sometimes it is necessary to slow down the mouse so that Windows
will properly recognize the action. You may also want to slow things down to better track
events or to just give your mouse activity a natural appearance. This parameter expects
values in seconds, and only recognizes the first three digits to the right of the decimal
point.

Tracking the Mouse
The remaining mouse operations functions, MouseCoords and MouseInfo, are probably the
most useful. These functions allow you to track where the mouse is and to discover the
actual status of the mouse buttons.

The MouseCoords function is called as:
MouseCoords(parent-windowname, child-windowname)

The MouseCoords function returns coordinates of the mouse within a window. If "parent-
windowname" specifies a top-level window and "child-windowname" is a blank string,
the specified X-Y coordinates are relative to "parent-windowname".

If "parent-windowname" specifies a top-level window and "child-windowname" specifies
a child window of "parent-windowname", the specified X-Y coordinates are relative to
"child-windowname".

If "parent-windowname" and "child-windowname" are both blank strings, the specified
X-Y coordinates are relative to the Windows desktop.

All coordinates are based on a virtual 1000 x 1000 screen.

The MouseInfo function is called as:

267

Introduction to Programming

MouseInfo(request_number)

The MouseInfo function returns a string containing the information identified by the
request_number argument. Request number values are:

0 Returns the name of the window where the mouse is positioned

1 Returns the top-level (parent) window where the mouse is
positioned

2 Returns the mouse position in logical coordinates (based on a
1000x1000 virtual screen)

3 Returns the mouse position in absolute screen coordinates (pixels)

4 Returns the mouse button status reported as a bitmask value. See
table below.

5 Returns the mouse position relative to the client area of the window
where the mouse is positioned, reported in virtual screen units
(based on a 1000x1000 virtual screen)

6 Returns the mouse position relative to the client area of the window
where the mouse is positioned, reported in virtual client units
(based on a 1000x1000 virtual screen)

7 Mouse coordinates relative to the bounding rectangle of the window
under the cursor, in virtual (1000x1000) screen units.

8 Synchronous status of mouse buttons, as a bitmask. This is like
request #4, except #8 returns the asynchronous (current) state of the
buttons, whereas #4 returns the state at the time the function was
called.

9 Window ID of top level parent window under mouse.

10 Similar to request 0 except that the request can also return the
window name of static, hidden and disabled child windows that
have a caption. Examples of static windows include WIL Dialog
VARYTEXT, STATICTEXT and PICTURE controls.

The mouse button status is reported as a bitmask value, which may contain a combination
of individual flags. The bitmask values are shown following.

Mouse Button Status Bitmask Values

Binary Decimal Comments

000 0 No mouse buttons down

268

Chapter 12 : Mousing Around

001 1 Right mouse button down

010 2 Middle mouse button down

011 3 Right and middle buttons down

100 4 Left mouse button down

101 5 Left and right buttons down

110 6 Left and middle buttons down

111 7 Left, middle, and right buttons down

The operations of the MouseInfo function are demonstrated in the :DO_DRAW subprocedure
in the Freehand.wbt program. The Freehand.wbt program is a very simple drawing
program that responds to the right and left mouse buttons. Holding the left (primary)
mouse button down draws a line as you move the mouse.

The right (secondary) mouse button is a little more sophisticated. The first time the right
mouse button is pressed, Freehand records the position as the start position for a line
(using the savePoint variable). Then, when the right mouse button is pressed again, a
straight line is drawn between the start position and the current position, with the current
position becoming the new start position.

On entering the :DO_DRAW subprocedure, we begin with a little setup, including creating a
workspace (drawID), selecting a drawing color, creating an Exit button, and setting a tag
in the stack.

:DO_DRAW

 nPenResult = 0

 lastPoint = "-1,-1"

 savePoint = "-1,-1"

 BoxCaption(mainID, "Freehand")

 BoxNew(drawID, "0, 0, 1000, 1000", 0)

 BoxPen(drawID, COLOR%nColor%, 1)

 BoxButtonDraw(drawID, bExit, "E&xit", "750, 860, 900, 930")

 BoxDataTag(drawID, "NULL")

To track mouse movements, the :DO_DRAW subroutine uses a loop to call the MouseInfo
function until a mouse button event is read. At this point, we don’t care which mouse
button was pressed, only that one button was clicked.

 Exclusive(@ON)

 While @TRUE

 BoxDataClear(drawID, "NULL")

269

Introduction to Programming

 nButton = 0

 nUp = 0

 While nButton == 0 ; loop while waiting for mouse event

 nButton = MouseInfo(4)

 nUp = nUp + 1

 if nUp == 10 then lastPoint = "-1,-1"

 EndWhile

The nUp variable in this loop is used to reset the lastPoint variable, which stores a
starting point for a line, after the mouse button has been released for an arbitrary interval.
This is so that we can start a new line, drawing freehand at a new location on the screen
without automatically joining the old and new lines.

Next, after a mouse button has been clicked, we need to determine which button by
checking the bitmask flags in nButton. We test the left mouse button first using the flag
value 04 (or 4). If we find that the left mouse button was pressed, then a query calling
MouseInfo(6) returns the mouse position in logical coordinates:

 If(nButton & 04) ; left button is down

 Point = MouseInfo(6)

However, the value returned by the MouseInfo function has one small flaw: the x and y
values are there but they’re separated by a space. The BoxDrawLine function, which will
be called next, needs the coordinates in a comma-delimited format. Fortunately, the
StrReplace function can replace the delimiting space character with a comma:

 Point = StrReplace(Point, " ", ",")

After ensuring that we have valid coordinates in the lastPoint variable, we draw a line
from lastPoint to Point. After drawing the line, we update both the lastPoint and
savePoint variables for future use.

 If lastPoint != "-1,-1" then BoxDrawLine(drawID,
"%lastPoint%, %Point%")

 lastPoint = Point

 savePoint = Point

 EndIf

If the right mouse button was pressed rather than the left, the operation is similar except
that the line is drawn from the savePoint location to the current mouse position:

270

Chapter 12 : Mousing Around

 If(nButton & 01)

 Point = MouseInfo(6)

 Point = StrReplace(Point, " ", ",")

 If savePoint != "-1,-1" then BoxDrawLine(drawID,
"%savePoint%, %Point%")

 savePoint = Point

 EndIf

Note that the savePoint variable, unlike the lastPoint variable, is not cleared
(reset to –1,-1) in the wait loop. For drawing a line from point to point, there is
an expected delay between mouse events, and clearing the start point for the line
would be counterproductive.

Finally, there’s also a test to decide if the Exit button was clicked and to clean up and exit
when this occurs:

 If BoxButtonStat(drawID, bExit) == 1

 BoxButtonKill(drawID, bExit)

 break

 EndIf

 Endwhile

 BoxDestroy(drawID)

return

Quite frankly, this isn’t much of a drawing program. It has only one pen (red) and two
drawing operations. However, it does serve its purpose in demonstrating how the mouse
can be used in an application by recognizing mouse button events and mouse position
information.

Summary

While mouse operations are integral in almost all contemporary applications, they are
also largely transparent to the programmer. Since transparency has its limits, however,
we’ve shown you the basics of writing your own mouse-oriented procedures, if only in
the most basic forms.

Next, in Chapter 13, we’ll look at a few advanced methods to allow you to "poke inside
the box" for those occasions when the available tools just aren’t quite enough.

271

Introduction to Programming

272

Chapter 13 : Poking Inside the Box

CHAPTER 13 : POKING INSIDE THE BOX
THE INTCONTROL FUNCTIONS

control n b: a mechanism used to regulate or guide the operation of a machine,
apparatus or system, c: a personality or spirit believed to actuate the utterances or
performances of a spiritualist medium.

The IntControl (or Internal Control) functions are a large group of functions that provide
the programmer with access to a variety of internal settings, ranging from controlling list
box operations, to sending Windows event messages, to rebooting the system.

The chances are very good that you will not need any of these IntControl functions. In
fact, we’ve used only one in the demo programs accompanying this book—IntControl 12.
However, when you find that you need something beyond the usual, the IntControl
functions can provide the solution you require.

All of the IntControl functions are invoked as:

IntControl(nn, p1, p2, p3, p4)

The nn argument is an integer identifying the specific function desired, and p1 through p4
are parameters appropriate to each function. Some IntControl functions require no
arguments, some require one, and a few require two or more arguments.

In this chapter, the IntControl functions have been grouped into rough categories
according to their use: internal control test, general purpose, application control, and
miscellaneous.

The Internal Control Test Function

IntControl function 1 is simply a test for the internal control function.

IntControl(1, p1, p2, p3, p4)

The SelfTest.wbt sample reports the p1, p2 and p3, p4 arguments in a pair of message
boxes:

273

Introduction to Programming

General-Purpose Functions

Quite a number of the IntControl functions are devoted to general-purpose objectives,
including the following:

• Retrieving the handles from existing application windows

• Selecting system fonts

• Determining how file list boxes display files

• Determining whether single or multiple selections are permitted from list boxes

Window Interactions and Window Handles

Several functions are provided to support lower-level Windows (system) interactions:
• The window handle of the current parent window is returned by IntControl function

20. This function is similar to the DllHwnd function and requires no arguments.
IntControl(20, 0, 0, 0, 0)

• The window handle of a named window is returned by IntControl function 21, where
p1 contains a partial window name to identify the window desired.

IntControl(21, p1, 0, 0, 0)

• Windows IDs for all Windows Explorer windows are returned as a tab-delimited list by
IntControl function 31.

IntControl(31, p1, 0, 0, 0)

• The class name for a specified window handle is returned by IntControl function 44,
where the p1 argument supplies the window handle.

IntControl(44, p1, 0, 0, 0)

The window handle can be obtained using the DllHwnd function or other IntControl
functions. A blank string will be returned if the window does not exist.

System Font Selection

The system font used in list boxes is set using IntControl function 28.

274

Chapter 13 : Poking Inside the Box

IntControl(28, p1, 0, 0, 0)

The p1 argument can be:

0 Proportional font (default)

1 Fixed-width font

2 GUI font

This function returns the current font type as 0 (proportional font) or 1 (fixed-width font).

File Operations

IntControl functions can perform delayed file move operations and set the file-sharing
mode.

File Moves
A delayed file move is performed by IntControl function 30.

IntControl(30, p1, p2, 0, 0)

The p1 argument identifies the source file (no wildcards are permitted), and the p2
argument provides the destination. Since the files are not moved until the system is
restarted, this function can be used to move or replace system files.

The destination argument may be a file name (matching the source file), a directory
name, or an empty string. When an empty string is used, the source file will be deleted.

Return values are 1 for success, 2 if a FileMove operation was performed, or 0 on failure.

File-Sharing Mode
The file-sharing mode for file reads is set by IntControl function 39.

IntControl(39, p1, 0, 0, 0)

The p1 parameter sets the share mode, as follows:

-1 No change to current share settings (default)

0 File sharing is not allowed

1 Allows other application to open files for read access

2 Allows other application to open files for write access

275

Introduction to Programming

3 Allows other application to open files for read and write access

The file sharing mode for file writes is set by IntControl function 40.

IntControl(40, p1, 0, 0, 0)

The p1 parameter is the same as for IntControl function 39.

File List Box Settings

Settings for the file list box display are controlled using IntControl functions 4 and 5.

File list box return requirements are set using IntControl function 4.

IntControl(4, p1, 0, 0, 0)

Values for p1 are:

0 The file list box is permitted to return a directory name only or may
return nothing at all

1 The file list box is required to return a file name selection (default)

The display and processing of system and hidden files are set by IntControl function 5.

IntControl(5, p1, 0, 0, 0)

Values for p1 are:

0 System and hidden files are not listed (default)

1 System and hidden files are listed and can be selected

The default file delimiter is set by IntControl function 29, which returns the previous file
delimiter.

IntControl(29, p1, 0, 0, 0)

The p1 argument should be a string specifying the new delimiter. Alternatively, if p1 is an
empty string, the current file delimiter is returned but no change is made.

276

Chapter 13 : Poking Inside the Box

General List Box Settings

Single or multiple selection requirements from a list box control (in a dialog) are set
using IntControl function 33.

IntControl(33, p1, 0, 0, 0)

The p1 argument can be:

0 Permits a single selection only

1 Allows multiple selections (default)

Application Control Functions

Another area where the IntControl functions are used is in providing controls for both
the application itself and for external applications, as well as some for the operating
system. These functions allow you to perform the following tasks:

• Generate Windows message events
• Control some WinBatch functions
• Restart Windows
• Close programs
• Get error messages
• Set CreateProcess flags
• Access memory addresses
• Set timing and waits for input

Some of these functions are mentioned only with brief explanations, and you’ll
need to refer to other sources for details. Or, to phrase it bluntly, some of these
functions are not intended for use by novices, while others are easier to invoke.
For example, if you’re planning on invoking the SendMessage or PostMessage
events, it would be a good idea to have some familiarity with the topic before
doing so. Check Windows programming references for more information about
Windows events and messages.

Windows Messages
A Windows SendMessage event is generated by IntControl function 22.

IntControl(22, p1, p2, p3, p4)

The four parameters required are:

277

Introduction to Programming

p1 The handle for the destination window (where the message is
sent)

p2 The message ID (in decimal format)

p3 A wParam value

p4 A character string, which is copied to a GMEM_LOWER buffer
while a pointer to the string is passed as the lParam argument in
the message (the buffer is released when the SendMessage
function returns)

The contents of the wParam and lParam arguments depend on the message ID. Refer to a
Windows programming reference for details.

A Windows PostMessage event is generated by IntControl function 23, following the
same rules as SendMessage event generation (22).
IntControl(23, p1, p2, p3, p4)

SendMessageA / SendMessageW

More conveniently, WinBatch now provides the SendMessageA and
SendMessageW functions.

SendMessageA issues a Windows SendMessage event with the lParam
parameter as an ANSI string. The format is:

SendMessageA(window-id/handle, message-id, wParam, lParam)

…where the parameters are:

(i) windows-id/handle Window ID or handle message is sent to

(i) message-id Message ID (decimal number)

(i) wParam Message specific information

(s) lParam The ANSI character string to be displayed

The SendMessageW function is the same as SendMessageA with the exception
that the lParam parameter is presumed to be a Unicode (wide character)
message for display rather than ANSI.

278

Chapter 13 : Poking Inside the Box

WinBatch Control

IntControl functions provide access to WinBatch exit codes, server status, icon states,
WinBatch program file names, and program exit options.

Exit Code
The exit code returned by WinBatch’s WinMain (entry point) function is set by IntControl
function 1000.

IntControl(1000, p1, 0, 0, 0)

The p1 argument contains the new exit code value. The old exit code is returned by the
function.

Icon States
The icon display state is set by IntControl function 1002.

IntControl(1002, p1, 0, 0, 0)

The display state of the WinBatch icon is set for the duration of the script as instructed by
the p1 argument. Values for p1 are:

-1 No change, returns current setting

0 The WinBatch icon is hidden

1 The WinBatch icon is displayed (default)

The "openable" state for the WinBatch icon is set by IntControl function 1003.

IntControl(1003, p1, 0, 0, 0)

The p1 argument sets the openable flag for the WinBatch icon. If the flag is ON (default),
then the WinBatch icon can be opened (restored) to a normal window by clicking on the
icon. If the flag is OFF, the window cannot be opened by any means. Values for p1 are:

-1 No change, return current setting

0 The WinBatch icon cannot be opened

1 The WinBatch icon can be opened (default)

279

Introduction to Programming

Program File Names
The file name of the current WinBatch program is returned by IntControl function 1004.

IntControl(1004, 0, 0, 0, 0)

If the current application is a child program called with the Call function, the name of the
main (calling) program will be returned.

WIL Termination Codes
WinBatch program exit options are set by IntControl function 12 (introduced in Chapter
11 as part of the generic initialization for a WinBatch window program).

IntControl(12, p1, p2, 0, 0)

The p1 argument consists of a combination of the Exit Windows option and a Terminate
Group option. The p2 argument is a string to be displayed when an exit is not permitted.

The Exit Windows option can be any one of the following:

0 A pop-up message box allows the user the option to terminate or to
continue

1 Applications are allowed to exit without warning

2 Applications are not allowed to exit (if p2 is not "" or 0, the
message provided will be displayed)

3 Reserved value, do not use

The Terminate Group option can be any one of the following:

0 Provide a notification message when the program is terminated by
the user

4 Allow a quiet termination (no message)

8 Refuse termination

The Exit Windows and Terminate Group options are combined by adding the two values.

Windows Restarting

Several IntControl functions allow restarting and warm rebooting (as if the Ctrl+Alt+Del
key combination was pressed) of Windows systems.

280

Chapter 13 : Poking Inside the Box

Windows System Restart
You can restart a Windows system using IntControl function 66, just as if Windows had
exited to DOS and then restarted.

IntControl(66, 0, p2, 0, 0)

You can execute a warm reboot using IntControl function 67.

IntControl(67, 0, p2, 0, 0)

A complete shutdown, including an automatic power-off is performed using IntControl
function 68.

IntControl(68, 0, p2, p3, 0)

Application Closing

WinBatch programs can be closed by other WinBatch applications using IntControl
function 47.

IntControl(47, p1, 0, 0, 0)

The p1 argument supplies the full or partial window name for the WinBatch program
window to close. The function returns @TRUE if successful or @FALSE on failure.

DOS applications can be closed by a WinBatch application using IntControl function 48.
(This function is not supported under Windows NT.)

IntControl(48, p1, 0, 0, 0)

The p1 argument supplies the full or partial window name for the DOS program window
to close. The function returns @TRUE if successful or @FALSE on failure. IntControl 48 has
been superceded with the function TerminateApp.

Error Messages

An error message string is returned by IntControl function 34, corresponding to the WIL
error identified by the p1 parameter.

281

Introduction to Programming

IntControl(34, p1, p2, 0, 0)

The Go to Web Page button appearing in WIL error boxes can be displayed or hidden
using IntControl function 50.

IntControl(50, p1, p2, 0, 0)

The p1 argument determines whether the button is included when a WIL error box is
created. Settings for p1 are:

-1 No change, return current setting

0 Remove the Go to Web Page button from error boxes

1 Add the Go to Web Page button to error boxes (default)

When the Go to Web Page button is pressed, the Web browser is launched and opens the
the url specified by the p2 argument.

Error Handling

There are two major methods to trap errors. The more powerful method is to use
IntControl 73 to set an error handler to capture all types of errors. Where as, the older
ErrorMode can only be used to capture minor errors.

IntControl(73, p1, p2, p3, 0)

The p1 argument lets you specify what should happen when the next error occurs in the
script.

-1 Don't change (just return current setting)

0 Normal error processing (default)

1 Goto the label :WBERRORHANDLER

2 Gosub the label :WBERRORHANDLER

3 Call the UDF specified by p3

This is a one-time flag, which gets reset to 0 (default) when an error occurs.

If you simply want to supress all displayed errors then you might want to use IntControl
38. IntControl 38 can tell the script to exit quietly upon error.

282

Chapter 13 : Poking Inside the Box

CreateProcess Flags

Flags for the CreateProcess operation can be set using IntControl function 51.

IntControl(51, p1, 0, 0, 0)

The CreateProcess function is used to determine the type of process and the process
priority when an application is launched. Refer to the online documentation for more
information.

Memory Access

The contents of a memory address are returned using IntControl function 32.

IntControl(32, p1, p2, p3, p4)

The p1 argument specifies the memory address.

The p2 argument specifies the type of data to be retrieved. The p2 argument should be one
of the following:

"BYTE" Returns byte data

"WORD" Returns word data

"LONG" Returns a long integer

The p3 argument specifies to either read or write from memory. Argument p4 specifies
the value to be read written to the memory location. It must be a single character or
integer, corresponding to "data-type".

A pointer to a binary buffer is returned by IntControl function 42.

IntControl(42, p1, 0, 0, 0)

The p1 argument specifies the binary buffer (see the BinaryAlloc function). The address
returned will be within the memory space of the WIL Interpreter.

Input Timing and Waits

You can use IntControl functions to set options for timeouts and the SendKey function.

283

Introduction to Programming

Timeouts
A wait (timeout) until a target application is waiting for user input is initiated by
IntControl function 36.

IntControl(36, p1, p2, 0, 0)

The p1 argument specifies a window name associated with (identifying) the target
application. The p2 argument is a timeout (in milliseconds) or –1 for no timeout.

This function waits until the process that created the specified window has paused and is
waiting for user input (with no input pending) or until the specified timeout interval has
elapsed. The function returns @TRUE if it has waited successfully or @FALSE if a timeout has
occurred or if it was unable to initiate a wait.

IntControl 36 has been superceded with the function WinWaitReady.

The window retry timeout interval is set by IntControl function 46.

IntControl(46, p1, 0, 0, 0)

The p1 argument can be:

-1 No change, return current setting

0 No retries

nn Number of seconds to wait (default = 9)

WIL functions that accept a window title as a parameter (except for the WinExist function) will
wait for the specified interval for the window to exist.

The SendKey Function
The SendKey function can be slowed using IntControl function 35.

IntControl(35, p1, p2, 0, 0)

The p1 argument is the amount of time (in milliseconds) to delay between keystrokes.
The function returns the previous delay setting. The default delay is 0 milliseconds (no
delay).

The p2 argument is the amount of time to delay in MouseClick and MousePlay between
pressing and releasing the mouse button for a single click (not a double-click), in
milliseconds. Default is 0 (no delay).

The WaitForInputIdle function can be enabled or disabled using IntControl function 43.

284

Chapter 13 : Poking Inside the Box

IntControl(43, p1, 0, 0, 0)

This function controls whether the SendKey, SendKeyTo, and SendKeysChild functions
attempt to wait until the active application is ready to accept input before sending
keystrokes. The function returns the previous setting.

Miscellaneous Operations

The IntControl functions discussed here simply cannot be conveniently categorized. One
of the functions allows you to reassess the current language. Another function is for
adding system menus to dialogs and list boxes.

Language Control
IntControl function 26 initiates a reassessment of the language currently used and makes
any changes required to the language strings used by the WIL Interpreter. Function 26
requires no parameters and is normally invoked when an application starts.

IntControl(26, 0, 0, 0, 0)

System Menus
System menus can be added to WIL pop-up windows using IntControl function 49.

IntControl(49, p1, p2, 0, 0)

The p1 argument specifies which pop-up windows will have system menus. Values for p1
are:

-1 No change, return current setting

0 No system menus (default)

1 Add a system menu to dialogs created using the WIL Dialog Editor

2 Add a system menu to list boxes (those created using AskItemList,
AskFileText or related functions)

3 Add a system menu to both dialogs and item list boxes

The p2 argument specifies the value that a dialog box (created using the Dialog function)
will return if the user closes the dialog without pressing one of the pushbuttons in the
dialog (e.g., by pressing <Alt-F4>, or by clicking on the "Close" icon in the title bar). If a
dialog returns 0, processing will be transferred to the label in the script marked ":Cancel".

285

Introduction to Programming

286

Summary

The IntControl functions offer an opportunity for the programmer to poke around inside
the box and perform tasks that are not supplied by conventional WinBatch functions.
These are not mainstays in your programming toolbox, but when needed, they are useful
and usable.

Next, in Chapter 14, we’ll take a look – briefly – at Dynamic Dialogs; i.e., dialogs which
are constructed "on the fly" and, therefore, can be configured by the application as
desired.

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

CHAPTER 14 : DYNAMIC DIALOGS, MENUS,
CALLBACKS
MAKING DYNAMIC DIALOGS

WinBatch supports two types of dialog: static or dynamic. Both are customarily drawn
using the WinBatch Dialog Editor but they differ in how they function.

For a static dialog, the user fills in fields, checks various items or makes assorted
selections before pressing a Submit (or Ok or whatever) button. At that point, the dialog
exits and the WinBatch code continues to execute.

The shortcoming of a static dialog, however, is that outside of a few standard, primitive
responses, aside from accepting input, the dialog has no ability to interact with the user.
That is, the only choices presented to the user are those which have been defined in the
original dialog.

Using dynamic dialogs, however, you have the potential to use your own user defined
functions or subroutines to perform a variety of functions while the user is still interacting
with the dialog. For example, a dynamic dialog might perform such tasks as validating a
password, calculating costs for an order based on the user’s selections, enabling or
disabling options based on prior selections or any of a multitude of other tasks.

To show how dynamic dialogs work, we’ll begin with a very simple
dialog which contains a check box and one button as shown at left. The
dialog was generated by the WinBatch Dialog Editor and produced the
WinBatch code shown following (see also Exercise A.wbt, etc. for the
source code for this and subsequent examples.)

EXAFormat=`WWWDLGED,6.2`

EXACaption=`Exercise A`

EXAX=9999 ; -01

EXAY=9999 ; -01

EXAWidth=060

EXAHeight=045

EXANumControls=002

EXAProcedure=`DEFAULT`

EXAFont=`Microsoft Sans Serif|7373|70|34`

EXATextColor=`0|0|128`

EXABackground=`DEFAULT,128|255|255`

EXAConfig=0

287

Introduction to Programming

EXA001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox, "Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXA002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXA")

To begin, we’ll take a look at the basic dialog code with a rundown of the code structure.

By default, the dialog editor supplies the name MyDialog but this can be – and
should be – changed to something more appropriate. After all, how many
MyDialogs can you keep track of?

First, EXA is the name, specified in the dialog editor, of this dialog and is short for
Exercise A and all of the dialog variables in this example begin with EXA (required).

EXAFormat Used to tell WinBatch what kind of dialogs we are dealing with.
These are the version 6.2 dialogs.

EXACaption Simply specifies the caption or title of the dialog box.

EXAX Specifies the position for the upper-left corner of the dialog relative
to the left edge of the screen. A value of –1 specifies the dialog
should be centered.

EXAY Specifies the position for the upper-left corner of the dialog relative
to the top edge of the screen. A value of –1 specifies the dialog
should be centered.

EXAWidth Specifies the width of the dialog.

EXAHeight Specifies the height of the dialog.

EXANumControls Reports the number of controls in the dialog.

EXAProcedure At this point, EXAProcedure is set to ‘DEFAULT’ meaning that
there is no desired procedure for this dialog. This variable will be
discussed later in this chapter since the dialog procedure is at the
heart of this topic.

EXAFont Defines a default font for the dialog. Optionally, individual controls
may have their own font specifications.

EXATextColor Defines the default text color for the dialog. Again, individual
controls may use a different text color.

EXABackground Defines a background to use for the dialog; may be either a BMP
file or a color specification.

288

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

EXAConfig This controls how the Dialog Editor creates the WIL Dialog
command in your template. If the variable is given a value of one
(1), the editor will create a return variable name that includes the
dialog name (<dlg-variable>). For example, if your dialog name is
EXA, the dialog statement would be:
EXAButtonPushed = Dialog("EXA", 1)

Without this setting the dialog statement would be:
ButtonPushed = Dialog("EXA", 1)

If the variable is given a value of two (2), the Dialog Editor will
place a zero (0) in the optional second parameter of the Dialog
statement when it creates your dialog template. This optional
parameter tells WinBatch to ignore the Dialog statement when it
processes a script containing the dialog template. The Dialog Editor,
on the other hand, will not ignore the dialog statement so that you
can reload the template into the editor at any time. If you do not
specify this configuration option, the Dialog Editor will create a
dialog statement with the second parameter set to one (1). This tells
WinBatch to process the Dialog statement by loading and displaying
the dialog template.

You can combine the values 1 and 2 using the binary OR(|) operator
to enable both features.

EXA001,
EXA002, etc.

The numbered variables define each of the controls in the dialog and
each begins with the dialog name (‘EXA’) followed sequentially by
number. Since they are difficult to code by hand, the Dialog Editor
is the preferred means of building a dialog. You will need to be able
to tell what control each variable is defining to get your Dynamic
Dialogs to work and, usually, a quick inspection of the data on the
line will tell you this.

ButtonPushed=
Dialog("EXA")

This is not actually a dialog definition variable, but included for
completeness. This is the (default) instruction which actually tells
WinBatch to display the dialog on the screen. This line may be
replaced (and usually will be replaced) with other instructions
beyond a simple display.

Where the Dialog Editor provides automatic code generation for a static dialog, we’re
now going to look at how a static dialog can be transformed into a dynamic dialog.

Adding Dialog Procedure code

Basically, to do Dynamic Dialogs, you have to add code, either in a #DefineFunction or
a #DefineSubroutine block to instruct WinBatch what to do. Although it is easily
possible to write all the Dialog Procedure by hand, it gets exceedingly tedious very
quickly. And, furthermore, most Dialog Procedure code has the same basic structure as

289

Introduction to Programming

any other Dialog Procedure code. In addition, most of the Dialog control functions have
dozens of hard to remember request codes that give no really readable hint as to what is
going on when examining the code.

To simplify matters, an automatic Dialog Procedure code generator has been added to
WinBatch Studio and this will both define a whole bunch of useful constants (many,
many more than you will likely need) and also generate a useful block of template code
based on your dialog.

To have WinBatch Studio generate the Dialog Procedure template code, you simply
highlight your dialog code, top to bottom, starting with the line similar to…

EXAFormat=’WWDLGED, 6.2’

…all the way down to and including the…

ButtonPushed=Dialog("EXA")

line.

Next – see illustration following – right-click the WinBatch edit window to get the
WinBatch popup menu to appear. From the menu, select:

 Code Blocks

 → Create Dialog Callbacks in Clipboard

→ Function with Constants

Generating code may take a few seconds. Once done, paste the generated code (it’s now
in your Windows Clipboard) into your script, usually preceding your original dialog
definition code.

290

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

Creating a Dialog Procedure code from a Dialog Definition block

Once you have created the dialog procedure and pasted the generated code into your
script, the next step is to locate the line similar to …

EXAProcedure=’EXACallbackProc’

… towards the bottom of the pasted code (generally in a block marked in red) and move
this line into the dialog definition code created by the Dialog Editor where you will
replace the original line …

EXAProcedure=’DEFAULT’

Next, you can, in the generated code, (optionally) delete the explanatory lines which tell
you want to do in this particular operation (highlighted block in following code
sample Exercise B.wbt.)

Okay, with this done, you are now ready to make your dialog callback actually do
something. To accomplish this, you will need to uncomment desired lines in the
generated code and add your own code to accomplish the intended task; a process which
will be covered later in this chapter.

First, however, let’s look at what has happened and what we have.
;==

;==

;==

#DefineSubRoutine InitDialogConstants()

291

Introduction to Programming

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

292

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

293

Introduction to Programming

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

294

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

#DefineFunction
EXBCallbackProc(EXB_Handle,EXB_Message,EXB_Name,EXB_EventInfo,
EXB_ChangeInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXB_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXB_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXB_Handle,MSG_BUTTONPUSHED,@TRUE)

; DialogProcOptions(EXB_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

; case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

; return(RET_DO_DEFAULT)

 EndSwitch ; EXB_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXBCallbackProc

;==

;==

;==

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

"REMEMBER UPDATE EXAProcedure VARIABLE AS BELOW AND DELETE THESE LINES"

EXBProcedure=`EXBCallbackProc`

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---"

EXBFormat=`WWWDLGED,6.2`

295

Introduction to Programming

EXBCaption=`Example B`

EXBX=9999 ; -01

EXBY=9999 ; -01

EXBWidth=060

EXBHeight=045

EXBNumControls=002

EXBProcedure=`EXBCallbackProc`; was EXAProcedure=`DEFAULT`

EXBFont=`Microsoft Sans Serif|7373|70|34`

EXBTextColor=`0|0|128`

EXBBackground=`DEFAULT,128|255|255`

EXBConfig=0

EXB001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox,"Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXB002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXB")

Message("CheckBox Value on Dialog Exit is", MyCheckbox)

exit

After this point, in our text examples, we’ll omit a lot of the preceding code and
only show portions of the script relevant to the topic. The entire code will, of
course, be found in the program examples.

Before moving on, if you’ll refer to the code preceding, you’ll find that it begins with a
large block – #DefineSubroutine InitDialogConstants – which defines a number of
constants used by various dialog control functions. This allows you to use the constants –
whose labels hopefully convey meaning to us – rather than relying on numbers … which
are clear to the computer but cryptic to carbon-based life forms.

Yes, we are relying on the computer to "translate" our labels – constants – into
numbers for operations but we’re already doing exactly the same thing with our
procedure and function names … and that’s what computers are for; handling
numbers at our convenience.

Some of you will also have noticed – hopefully – that the ‘EXA’s in the first example
have now become ‘EXB’s. This change (and the corresponding dialog name change)

296

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

serves two purposes: first, to make the examples easy to differentiate and, second, so that
we can have different examples as source files for you to refer to.

Following the constant definitions, you’ll find the #DefineFunction EXBCallbackProc
which is the template for your dialog procedure code.

And, following this (surrounded by "<X>--^!---" lines) is the single modified version of
the original dialog code where the EXBProcedure, unlike the EXAProcedure variable in
the first Exercise, has been set to EXBCallbackProc, the name of the #DefineFunction
preceding. This is the instruction which links the dialog and your custom code and
instructs WinBatch to begin processing the dialog callback procedure.

Functions vs Subroutines

The dialog procedure, EXBCallBackProc in this case, is a special case of either a
#DefineFunction or a #DefineSubroutine. The difference between these; i.e., a function
versus a subroutine is simple.

For a function, all variables are "pure local". That is, the variables used within the
function are invisible to the rest of the program and the only way to get information into a
#DefineFunction is via the passed parameters, and the only way to get information out of
it is via the return value.

Note: some obscure exceptions do apply.

In contrast, for a subroutine, all variables are "global". All variables in the subroutine are
visible and accessible the rest of your program. This allows easy import and export of
information from your #DefineSubroutine from and to the rest of your script. The
downside is that it is easy to mistakenly stomp on information in your main script that
you did not intend to.

As before, some obscure exceptions apply.

In particular, the #DefineFunction (or #DefineSubroutine) statement must have five
parameters. e.g.

#DefineFunction EXBCallbackProc(EXB_Handle, EXB_Message, EXB_Name,
EXB_EventInfo, EXB_ChangeInfo)

The parameters are

EXB_Handle A special number that refers uniquely to this specific dialog and will
be used later in subsequent calls to various dialog functions. (Not
used in Exercise B.)

EXB_Message A dlgmessage number to allow the dialog procedure to figure out

297

Introduction to Programming

what is going on and why it was called. By default, the dialog
procedure will be called once, with a dlgmessage value of zero. As
shown in a later example, passing a non-zero cold allows requesting a
specific service from the dialog.

EXB_Name The name of the control requesting a specific event; i.e. identifying a
pushbutton, checkbox or radio button selected and directing the
dialog procedure to respond accordingly.

EXB_EventInfo The event information object (valid only when DialogObject
generates event-code = 14)

EXB_ChangeInfo On RESIZE returns a space delimited list of dialog-units: in which the
items represent the delta (change in width and height) of the dialog
that resulted from resizing activity and the client height and width
that represent the internally maintained size of the dialog's client area.
{delta_width} {delta_height} {client_width} {client_height}

The dialog support functions make use of quite a few different numbers to represent
different things, and it can get quite confusing if you hard code all the numbers, as most
people will quickly forget what they mean. So we start off on the right foot here by first
defining a number of constants by calling the InitDialogConstants subroutine.

InitDialogConstants() ; Initialize Dialog Constants

Note that since InitDialogConstants is defined as a subroutine, the variables
the constants are assigned to are accessible by the code that called the subroutine
(as opposed to a function, where the variables are hidden from the calling code).

Next is the "Switch" statement in the Dialog Procedure.

The switch statement is the heart and soul of a Dialog Procedure. There is one case for
each different type of message that it can receive. Initially, the only message enabled by
default is the MSG_INIT initialization message.

When the Dialog Procedure starts up, by virtue of the EXBProcedure variable in the Dialog
Definition statements discussed earlier, the Dialog Procedure gets one chance to tell
WinBatch what it wants. Just before the Dialog is displayed to the user, the Dialog
Procedure is called with a EXB_Message value of MSG_INIT, which is the signal that the
Dialog procedure should perform its initialization steps. Generally the initializations steps
consist of telling WinBatch, via various Dialog support functions (discussed later) what
other messages your Dialog procedure wishes to receive.

The Switch statement produced by the Winbatch Studio code looks like:

 Switch EXB_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXB_Handle,MSG_TIMER,1000)

298

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

; DialogProcOptions(EXB_Handle,MSG_BUTTONPUSHED,@TRUE)

; DialogProcOptions(EXB_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

; case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

; return(RET_DO_DEFAULT)

 EndSwitch ; EXB_Message

Please note that most of the generated code is commented out and that the only active
code looks like this:

 Switch EXB_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXB_Message

In effect, all that happens is that the MSG_INIT command is captured and RET_DO_RETURN is
returned, instructing WinBatch to do nothing except for the default processing. This will
not, however, always be the case and, in further examples parts of the existing code will
be uncommented and new code will be added.

But, before going too far, we should look at the possible return values. Any time a dialog
procedure exits (closes), it is expected to return a value to tell WinBatch what’s supposed
to happen next.

The permitted return values and their actions are:

Any positive integer
e.g. 1, 2, 3, etc.

Close the dialog, returning the specified value as the return
value of the dialog.

RET_DO_CANCEL = 0 Cancel the dialog, i.e., do normal CANCEL processing.

RET_DO_DEFAULT = -1 Do default processing to close the dialog

RET_DO_NOT_EXIT= -2 Do default processing but do not close.

At this point, Exercise B.wbt has taken the step of hooking up a dialog procedure and,
within the procedure, an initialization case which, in this example, actually does nothing.
Now, however, all of the major pieces are in place and the next step will be to flesh out
the initialization process.

299

Introduction to Programming

Exercise_C
The next step is to add functionality to the switch code so that the dialog is able to
respond – appropriately – to the activity which we’re interested in monitoring. While
simple, for this Exercise, the objective is to have the user confirm clicking on the
checkbox. And, to accomplish this task, notice is required when there’s any activity in a
checkbox and the code in Exercise B.wbt (now to become Exercise C.wbt) must be
modified.

First, three previously commented-out lines in the EXBCallbackProc are uncommented to
become active (shown highlighted here):

#DefineFunction
EXCCallbackProc(EXC_Handle,EXC_Message,EXC_Name,EXC_EventInfo,EXC_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXC_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXC_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXC_Handle,MSG_BUTTONPUSHED,@TRUE)

 DialogProcOptions(EXC_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

In the MSG_INIT code, the change above tells WinBatch that we do want to know about
CheckBox events.

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

 Case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

 Return(RET_DO_DEFAULT)

And these two lines have been uncommented so that MSG_CHECKBOX messages (events) are
reported even though the return value is still –1 (RET_DO_DEFAULT), calling for default
processing on closing the dialog.

 EndSwitch ; EXC_Message

 Return(RET_DO_DEFAULT)

300

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

#EndFunction ; End of Dialog Callback EXCCallbackProc

There’s one further provision, following the dialog execution (i.e., after the dialog
closes):

Message("CheckBox Value on Dialog Exit is", MyCheckbox)

Strictly speaking, this last instruction has nothing to do with processing the dialog but is
here to let you see what the exit value returned by the checkbox is: i.e., 1 (TRUE) if the
checkbox was checked or 0 (FALSE) if unchecked.

Exercise_D
For the next step (Exercise D.wbt), we’ll add code which does something at least
vaguely useful. And, as with EXC, the changes for EXD are fairly brief, appear only in
the EXDCallbackProc function in the Case MSG_CHECKBOX response and, following, again,
are shown highlighted.
#DefineFunction
EXDCallbackProc(EXD_Handle,EXD_Message,EXD_Name,EXD_EventInfo,EXD_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXD_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXD_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXD_Handle,MSG_BUTTONPUSHED,@TRUE)

 DialogProcOptions(EXD_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

 Case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

 flag=AskYesNo("Example D","Do you really want to change the
value of this checkbox?")

 If flag==@NO

 ;Set it back to what it was

 cbval=DialogControlGet(EXD_Handle,"CheckBox_1",DC_CHECKBOX)
; get new state

 DialogControlSet(EXD_Handle,"CheckBox_1",DC_CHECKBOX,!cbval)
; put back opposite state

 EndIf

301

Introduction to Programming

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXD_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXDCallbackProc

In Case MSG_INIT, the line:

 DialogProcOptions(EXD_Handle, MSG_CHECKBOX, @TRUE)

… ensured that any change to any checkbox in the dialog would cause this code to
execute. i.e., either checking or unchecking the checkbox would invoke this provision
with the AskYesNo function called to request confirmation.

Note: in this example however, there will never be an option to uncheck the
checkbox because checking the box – whether answered "Yes" or "No – already
causes the dialog to return.

If the user responds "No", the DialogControlGet function is called with EXD_Handle,
EXD_ID ("CheckBox_1") and the constant DC_CHECKBOX (defined in InitDialogConstants
with a value of 1) and returns the present value of the checkbox (i.e., @true if checked or
@false if not) as cbval.

Next, the DialogControlSet function is called – with the same three initial parameters
plus a final argument: !cbval to set the new value of the checkbox. The exclamation
mark (!) is the logical NOT operator and changes an @true to @false and vice versa so the
value (setting) of the checkbox is cleared if set or set if previously cleared.

IMPORTANT TIP: In WinBatch Studio, if you click on a function name (shown in
blue) and then hit Shift-F1, WinBatch Studio will open the help page for that
function.

At this point, Exercise D.wbt is ready to run and you should see results like this:

302

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

Exercise_E
As a final exercise, Exercise E.wbt provides an example of how two (or more)
checkboxes can be treated separately.

First, we’ve declared two different checkboxes (and also notice that EXENumControls has
changed).

EXEFormat=`WWWDLGED,6.2`

EXECaption=`Example E`

EXEX=9999 ; -01

EXEY=9999 ; -01

EXEWidth=068

EXEHeight=057

EXENumControls=003

EXEProcedure=`EXECallbackProc`

EXEFont=`Microsoft Sans Serif|7373|70|34`

EXETextColor=`0|0|128`

EXEBackground=`DEFAULT,128|255|255`

EXEConfig=0

EXE001=`005,005,056,010,CHECKBOX,"CheckBox_1",MyCheckBox,"&Confirm
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXE002=`005,023,056,010,CHECKBOX,"CheckBox_2",MyOtherCheckBox,"&But not
me",1,2,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXE003=`015,039,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"&OK",1,3,DE
FAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXE")

Message("CheckBox Values
are",StrCat("EXE001=",MyCheckBox,@CRLF,"EXE002=",MyOtherCheckBox))

exit

And we’ve changed the message reporting the results to show two different values.

Next, as with the previous examples, in Example E, the heart of the operation appears in
the MSG_CHECKBOX case in the dialog procedure switch statement:

Case MSG_CHECKBOX

 Switch ON_EQUAL

303

Introduction to Programming

 Case EXE_Name == "CheckBox_1" ; ID "CheckBox_1" CheckBox_1
MyCheckBox

 flag=AskYesNo("Example D","Do you really want to change the value
of this checkbox?")

 If flag==@NO

 ;Set it back to what it was

 cbval=DialogControlGet(EXE_Handle,"CheckBox_1",DC_CHECKBOX) ;
get new state

 DialogControlSet(EXE_Handle,"CheckBox_1",DC_CHECKBOX,!cbval) ;
put back opposite state

 EndIf

 Return(RET_DO_DEFAULT)

 Case EXE_Name == "CheckBox_2" ; ID "CheckBox_2" CheckBox_2
MyOtherCheckBox

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXE_Name

 Return(RET_DO_DEFAULT)

Here we have the Switch EXE_Message structure (familiar from previous examples)
enclosing another, nested switch statement as: Switch ON_EQUAL Case EXE_Name ==…
This inner switch statement allows differentiation between the checkboxes.

You should also notice that the switch – ON_EQUAL – is performed on a test EXE_Name ==
… Since only one case will match, this allows a switch to occur where a simple:

 Switch EXE_Name
 Case "CheckBox_1" …
 Case "CheckBox_2" …

… structure would fail (since a string can not be used as a case statement).

Exercise_F
A bonus example – see Exercise F.wbt – shows another nested switch … case … switch
… case … format. Play with the code file and see what changes you can make, how they
work and what effects you can get. Remember, the best way to learn – and understand –
something is simply to get your hands dirty by doing something.

Summary

Dynamic dialogs offer a very useful method of extending static dialogs for much greater
functionality by allowing dialogs to respond – interactively – to the user’s actions. How
you use these is an open question, limited only by your imagination … and your skill in
defining the responses … as well as your skill with our next topic.

304

Chapter 14 : Dynamic Dialogs, Menus,Callbacks

Thus far, you’ve learned a lot about how to build applications; now – in Chapter 15 – it’s
time to learn how to debug your WinBatch applications. Don’t skip that chapter. There
isn’t a programmer alive—professional or novice—who doesn’t rely on debugging
techniques and tools to make his or her programs function. For a programmer, debugging
is just as routine a process as is filling a coffee cup (or grabbing a can of cola or whatever
your tipple of preference happens to be).

305

Introduction to Programming

306

Chapter 15 : When Things Go Wrong

CHAPTER 15 : WHEN THINGS GO WRONG*
DEBUGGING APPLICATIONS

Find out the cause of this effect,
Or, rather say, this the cause of this defect,
For this effect defective comes by cause.

(William Shakespeare, Hamlet)

debugging – The process of finding, locating, and removing logical or
syntactical errors from a computer program. This can range from simply
checking the results of calculations to locating obscure errors in logic that only
occur under very specific conditions. (The PC User’s Pocket Dictionary)

Debugging applications is simply a fact of life. Everyone does it, and those who claim
they do not are simply as bad liars as they are programmers. Debugging is something to
be ashamed of only if it is done badly.

Back in Chapter 1, "The "Golem Principle," we stressed an important fact: Computers
do not think! Using "The Sorcerer’s Apprentice" as an analogy, we explained that the
only thing that a computer can do is to follow instructions. A computer can accomplish
its tasks very rapidly, efficiently, and patiently. But the computer does not take any
initiative; it does not possess even a modicum of common sense. A computer will do
something totally stupid if this is what it has been instructed to do!

The problem really is that the instructions we give to computers are composed of small
details combined to form complex operations. Since the languages we use to create
computer programs are not natural to us (you can’t really carry on a conversation in a
computer language), the fact that these instructions do not always perform in precisely
the intended fashion shouldn’t be any surprise.

And, when something fails, the fault is not the computer’s. The fault is that the
instructions we have provided are not sufficient to the task. All that the computer has
done is to perform precisely as it was requested. Thus, the process of debugging is a
matter of discovering where our instructions were inadequate and, equally important,
why they were inadequate.

And, of course, along with debugging, there’s also a little matter of correcting the
problems once they’ve been found.

* ... and, rest assured, they will!

307

Introduction to Programming

Learning to Debug

This chapter is organized as a series of exercises. The exercises are provided as programs
where the titles for these programs take the form Debugnn.wbt and nn is the exercise
number.

These exercises are not intended as tests; you will not be graded on your successful or
unsuccessful solutions to the problems incorporated in each. Instead, these exercises are
intended to show you some of the problems that can be found, help you learn how to
identify the problems, and suggest how to correct the problems.

There will be a test, but in this classroom, the test is given by reality, not by your
teacher. Therefore, the test comes later, when you create your own applications.
And your grade is simply whether your applications perform or fail and, of
course, how well they perform.

A solution is given for each of the exercises but, rather than looking ahead at the answers
(since you can only cheat yourself by doing so), begin by trying to work through the
exercise programs on your own and answering three questions:

• What’s the problem?
• Why does the problem occur?
• How can the problem be corrected?

Debugging in an IDE

With WinBatch, as with most modern programming tools, the programming environment
itself provides tools for debugging. These tools consist of several elements, including
features that allow the programmer to execute a program while watching execution
through the source code, stop execution at specific locations, and examine the contents of
variables during execution.

For an example, let’s begin with Debug01.wbt. When we run the program in debug mode
(Ctrl-F7), this dialog box appears:

308

Chapter 15 : When Things Go Wrong

Here, you’re asked to enter a value in one field and to enter a password in the second.
Presumably, you’ll click on the Test button to proceed.

But, after clicking on Test, instead of a result report, you see:

Illegal Syntax? Cheeze-it, fellows! The code police are after you!

The terminology "Illegal operation," which features in a great many error messages, has
caused many worried users to wonder what laws they had inadvertently broken.

In this case, the message is trying to tell you that the WIL Interpreter has encountered an
instruction that does not follow acceptable (legal) rules of syntax, as a courtesy, the
message is also reporting exactly which instruction: Message("Report", For an
experienced programmer, this may be a pretty clear explanation.

Except maybe you aren’t an experience programmer and this isn’t clear. So, what do you
do? Go to the Tech Support Web Page?

That’s a little drastic for this type of error. If you simply click Ok in the message box,
WinBatch will take you to the exact point in the source code where the error occurred:

309

Introduction to Programming

Now you can see a bit more of what’s happening. Because this is an interactive debugger,
the yellow blip () at the left is a marker showing exactly where in the code the error
occurred. Where older debuggers provided a list of line numbers where errors occurred,
an IDE takes you directly to where to look for the mistake.

Since you don’t have to go hunting for the problem, does anything about the instruction
strike you as an error?
Do you need a hint? Or did you remember the WinBatch restriction (which doesn’t apply in
many languages) requiring command instructions to appear on a single line?

So, how about correcting this error so that it reads:

Next, after doing so, run Debug01.wbt again…problem solved.

310

Chapter 15 : When Things Go Wrong

Debugging Tools

Debugging tools were introduced back in Chapter 2 during your tour of the WinBatch
Studio IDE. These are the tools you will need to debug not only the sample applications,
but your applications as well.

The debug tools appear in the IDE toolbar:

Beginning at the left, the first tool is the Go button . Clicking on the Go button
initiates execution of the application under development. If you are using the compiler
version of WinBatch, the Go button ensures that execution takes place in debug mode.

The differences between debug and normal execution are several. Where normal
execution simply runs until the application exits (or until a serious error occurs), debug
execution permits you to do the following:

• Interrupt execution at preset breakpoints.
• Terminate execution on errors.
• Watch the values stored in variables.
• Change values stored in variables during execution.
• Step between breakpoints.
• Step through instructions individually.
• Step into subroutines.

Of course, if there are no errors and if no breakpoints have been set, the application will
execute in debug mode exactly the same as in normal execution—that is, it will run until
normal termination.

Debugging during Execution
Perhaps the easiest way to learn to debug is simply to debug an application. For an
example, let’s look at the demo program Debug02.wbt.

This demo program is actually the same as the VariTest.wbt program used in Chapter 4.
Since it contains a deliberate operation error—as opposed to an error in instructions—it is
an excellent example of how the debugger can interrupt execution when it encounters an
error.

First, open WinBatch Studio. Next, load the Debug02.wbt program. And, finally, click on

the Go button to execute the program.

The first four steps in Debug02.wbt will execute normally. The fifth step, however, will
not. Before it can be reached, an operational error will halt execution, and you’ll see this
message:

311

Introduction to Programming

As the code remarks (in the comment), this step is expected to fail. The point isn’t the
failure per se but to discover why this step is invalid.

Notice the grayed-out More Error Info button in the image above? Not all error
messages have the More Error Info button activated. It is only activated when
there is extended error information which – usually – contains a Windows
System level error.

Sure, there’s a blatant clue right there in the title bar: "Variable could not be converted to
a valid number." But what variable? And why not? And how are we going to find out?

Well, the last question is the easiest to answer ... and also the first step in finding the
answers to the previous two questions. Therefore, the first step is simply to click on the
Ok button.

When we do, WinBatch Studio takes us to the editor:

312

Chapter 15 : When Things Go Wrong

Here the yellow blip [] shows the instruction where execution was interrupted, and the
bottom pane (the Watch window) shows the current values for the a, m, and n variables.
(The remaining variable, param0, can be ignored since this was the number of arguments
passed to the program when it started—that is, none.)

Notice that a is zero at this point because the addition operation failed. The real clue,
however, lies in the m and n variables, both of which are string arguments. Since
WinBatch doesn’t support an addition operator (+) for strings ... well, doesn’t this look
like a probable cause?

Yes, in fact, this is precisely the cause. Since WinBatch doesn’t know how to add two
strings, execution has been interrupted on an error.

But we’re not finished yet.

First, with the text cursor positioned on the line where the failure has occurred, click on
the Breakpoint button . This action will insert a breakpoint (identified either as or

 at the left column) in the code. On the next execution, the program will stop at this
point but will do so before an error occurs.

In addition to setting a breakpoint, the Breakpoint button also toggles a
breakpoint setting. By positioning the cursor on a line where a breakpoint is set
and then clicking on the button, the existing breakpoint is cleared. The Clear All
Breakpoints button will remove all breakpoints from the program code.

Next, run the program again and proceed until the breakpoint is reached. This time, the
WinBatch Studio editor will look the same as before (with the addition of the breakpoint
marker), except that no error report has been issued because the instruction causing the
error has not been executed yet.

Now, in the Watch window, double-click on the m variable. This will bring up the Set
Variable dialog:

313

Introduction to Programming

If the Watch window is not visible in WinBatch Studio, click on the Watch button
 at the right of the debug toolbar to open the window.

In the Set Variable dialog, change the value in the edit box to a numerical value, such as
2.3, and then click on OK. Do the same for the n variable.

Finally, click on the Go button again. The program will resume execution from the
breakpoint. This time, the program will run without errors, because the contents of the
variables have been changed to values acceptable for an addition operation.

Using the Watch window and the Set Variable dialog is particularly useful for
setting values in variables to test extreme conditions during execution and to test
whether error traps and error correction provisions perform as expected.

Tracing Execution Step by Step
Quite often, the important question isn’t where an error became fatal but how the error
condition or erroneous data came to exist in the first place. For this purpose, instead of
relying on a single breakpoint to halt execution at the error point, we set a breakpoint
prior to the error and then watch what is happening as we proceed in step-by-step
execution.

To control execution on a step-by-step basis (one instruction at a time), WinBatch Studio
provides two controls: Step Into and Step Over.

The Step Over button executes the next instruction, but if the instruction is a gosub,
Call, execution does not trace into the subroutine or external program.

In contrast, the Step Into button traces execution by stepping into subroutines and
external programs. For an example of how each of these work, load the ExternCall.wbt
program and then use the Breakpoint button to set breakpoints in the program as
shown:

314

Chapter 15 : When Things Go Wrong

Now execute the program. Then, when execution halts at the first breakpoint, click once
on the Step Into button . This will step into the external GetData.wbt program.

At this point, either the Step Into or the Step Over button will walk you through
execution one step at a time. As you step through the program, take note of the variables
in the Watch window and how the values shown change as instructions are executed.

If you want to speed up the debugging process simply click the Go button .

For example, in the following image, the program has traced execution from
the ExternCall.wbt program into the GetData.wbt program and is now paused after
reading a line of information from the external data file.

315

Introduction to Programming

In the Watch window, the slinein variable shows the line that was just read from the file.

The Watch window always shows variable names in full lower-case irrespective
of how these names appear in the source file.

By placing a breakpoint within the while loop where the list file is being read, we have a
convenient way to watch what is happening while the file is open. Then, instead of using
the Step Into or Step Over buttons to walk through execution, we can simply click on the
Go button each time to cycle through the loop and back to the same point.

In many cases, this can be exactly the type of procedure we’ll use to find out why an
error occurred. By watching the data—the contents of the variables—on each loop, we
can get a sense of how an error happens and what provisions might be needed to ensure
that the error doesn’t happen in the future.

Terminating Execution
While debugging an application, we do not necessarily need to allow the program to
terminate normally. And, sometimes, if the bug is bad enough, it may not even be
possible for the program to end normally.

As an example, let’s look at the Debug03a.wbt program, which executes a simple search
for prime numbers. Of course, like the other demo programs discussed in this
chapter, Debug03a.wbt has a couple of shortcomings.

One is that it is slow—deliberately so, to tell the truth. A second is that the program
contains a serious error. And, if these weren’t enough, there’s an inherent problem to
boot.

316

Chapter 15 : When Things Go Wrong

Because the program is slow, we’re not likely to see the serious error until a long time
after the program begins execution. In fact, the problem won’t be visible until it finishes,
and, even then, the cause of the error may not be immediately obvious.

But the point is that we don’t need to wait forever to examine what is happening within a
program. Instead, by inserting a breakpoint during execution, rather than before starting,
we can pause the program and take a look at what’s going on.

Here, we have a snapshot of the program during execution:

In this snapshot, we can see a number of things. From the Watch window, we can see that
the program has tested integers up to 485, that we’ve found 93 prime numbers thus far,
and, if you’re sharp, you should see the error, too.

This is not an artificial error. This error came about purely by accident while your author
was trying to decide how to best illustrate an error. But accident or not, it’s a valid error
and a good illustration of the value of debugging.

Have you spotted it yet?

If not, then look at the value of the listPrimes variable, which was intended to store a list
of the prime numbers found. Except that it’s empty, right? And what’s this listResult
variable which contains a very short string?

Initially, the name listResult was going to be used as the list storage variable ... until I
decided to change it to listPrimes as a more representative label. The error is that I failed
to change all occurrences.

317

Introduction to Programming

So now we’ve avoided waiting – potentially for hours – until the program was finished in
order to find out that there was a serious flaw. But, having recognized the flaw, do we
need to wait for completion before repairing the error?

No, we can click on the Stop Debugging button to bring execution to an immediate
halt.

The Stop Debugging button will interrupt the program at any point. It isn’t
necessary to use a breakpoint to pause execution first.

When you click on the Stop Debugging button, a dialog will ask if you want to stop the
script. So, if you clicked on the button by accident, you can choose No to resume
execution.

At this point, you know about the basic tools for debugging an application. But there’s
more to debugging than simply interrupting execution and examining variables.

Debugging Options

WinBatch has a number of useful debugging utilities which can make troubleshooting
easier. Before proceeding with debugging operations, give these utilities consideration
and then think about how you can use them – as alternatives – in the following examples.

Debug
When Debug is initialized, a dialog box which controls the execution of each statement is
displayed. Debug works line by line through the script, displaying the current statement,
its value and the following statement. The script will also be executed in conjunction with
the display of statements. Initialize Debug by adding Debug(1) or Debug(@ON) to a specific
point in your script.

As an example, using Debug03b.wbt, add the command Debug(@ON) at the start of the
program. Now, when you execute the program, the Debug dialog will appear (see
following) and you can use the Next button to step through the program until you reach
an interesting point in the execution.

318

Chapter 15 : When Things Go Wrong

Now, when you’re ready, enter a variable name – such as listprimes – in the edit
window and then click the Show Var button and you will see the current value of the
requested variable.

Okay, now it’s your turn to perform your own debug operation so go back to
the Debug01.wbt or Debug02.wbt examples and try using the Debug operation … and try
to decide where or how to trigger the Debug execution for the best operation.

Tip: think about using a Boolean IF test to trigger Debug at an appropriate
point.

DebugTrace
DebugTrace will create a file showing each line executed and the return value of the line.
It will consume considerable processing time and is generally reserved for particularly
hard-to-debug problems. DebugTrace will append the debug data to the end of the file
you specify. You may want to delete the file, if it already exists.

DebugTrace

Controls and customizes the WIL debugging trace logs.

Syntax:
DebugTrace (request-code [,parm1 [, parm2]])

Parameters:

(i) request-code: numeric code indicating desired action (see below)

319

Introduction to Programming

(s/i) parm1: [optional] depends on requestcode

(s/i) parm2: [optional] depends on requestcode

Returns:

(i) DebugTrace mode state: 0 = Off 1 = Statement by statement Tracing enabled.

To debug into a 'Called' WinBatch script, User Defined Function or User Defined
Subroutine, make sure to add the corresponding debug command, to the 'called script',
User Defined Function or User Defined Subroutine.

IntControl (71, p1, p2, 0, 0) can be used to dump WIL and extender function
tables to the debug log file.

Request codes:

Note: For requests which take a file name, if "filename" is "*DEBUGDATA*" then
debug output will be written to the system debugger using the OutputDebugString
Windows API (see WIL DebugData function).

Request codes fall into one of three categories:

Modes These control the DebugTrace line by line logging.

Mode Option Flags These control the log file names, formatting, and
content.

Immediate Action Codes These cause additional data to be immediately written
to the Debug Trace log file.

Modes:

Request
code

Meaning Parm1

-1 Returns previous trace mode

0
(@OFF)

Stops statement by statement debug tracing.

1 (@ON) Starts or resumes statement by
statement debug tracing.

Optional filename to set or change the
current debug trace log file. If no
previous debug trace file has been
specified, then a filename is required.
Output filename may be specified by a
previous @ON, 10, 100, or 101

320

Chapter 15 : When Things Go Wrong

requestcode.

10 Same as 1 (@ON) with the addition that if the output file exists, one
attempt will be made to delete the file before continuing.

22 Allow DebugTrace continuation (inherit the debug mode from the caller).

By default, when the code enters a UDF, UDS or Call'ed script file,
statement by statement debugging is suppressed until the script returns.

Adding DebugTrace(22) to a UDF, UDS, or called script will resume
statement by statement debugging *IF* it was active on entry.

Mode Option Flags:

Request
code

Meaning Parm1

100 Specify output file
name for subsequent
debug trace logging.

Required filename parameter

101 Same as 100 with the addition that if the output file exists, one attempt
will be made to delete the file before continuing.

102 Dump WIL
variable table to the
debug trace log file
when a terminal
error occurs.

(Replaces option 2
in version 2006A
and older)

0 - Do NOT dump variable table to debug trade
log file. (default)

1 - Dump WIL variable table to the debug trace
log file if a terminal error occurs.

103 Dump internal
debug data for each
keyword lookup.

0 - Do NOT dump debug data for keyword
lookups. (default)

1 - Dump debug data for keyword lookups.

104 Suppress statement
timestamp
information.

0 - Include statement timing information (default).

1 - Suppress statement timing information.

note: This option is useful when creating multiple
debug trace log files that you plan to compare
with one another using a file-compare type
program. As statement timing will vary slightly,
this option allows statement timing information to
be skipped to avoid non-relevant differences in
the generated log files.

321

Introduction to Programming

Immediate Action Codes:
Note: DebugTrace(@OFF) does not suppress the execution of these codes.

In the case of where a code would output information to the debug trace log file, if the
file is defined, then an attempt will be made to write data to it.

Request code Meaning Parm1

200 Reset. Turns off statement by
statement tracing, and resets all
the Mode Option Flags to the
default values

Optionally set new debug trace
file name. If there is no optional
parm parameter, or it is set to a
null string, the output filename
parameter will be cleared.

203 Write a string to the debug
trace log file.

Specifies a string to be written to
the debug trace log file.

204 Write a string, surrounded by
"$" signs to the debug trace log
file.

Specifies a string to be written to
the debug trace log file.

205 Dump WIL and loaded extender function tables to the debug trace
log file.

206 Dump WIL variable table to the debug trace log file. Includes values
for simple variable types.

Note: Only the first part of long strings will be dumped. Complex
variable types (Arrays, Binary Buffers, etc) will not have variables
dumped.

207 Dump stack info to the debug trace log file.

208 Dump machine information block.

277 Dump formatted internal
debugging information to the
debug trace log file. Much of
the same information as
provided by IntControl 77 is
available.

Missing or "" - Display select
internal information

Numeric value - Displays more
detailed information regarding a
specific IntControl 77 request.

Further, to debug into a 'Called' WinBatch script, User Defined Function or User Defined
Subroutine, make sure to add the corresponding DebugTrace command, to the 'called
script', User Defined Function or User Defined Subroutine.

Here is the Debug03c.wbt program – using the DebugTrace function – for you to play
with.

listPrimes = ""

322

Chapter 15 : When Things Go Wrong

nCount = 0

For i = 1 to 1000000

 bPrime = @TRUE

 For j = 2 to Sqrt(i)

 if(i / j) == ((i * 1.0) / (j * 1.0)) then bPrime = @FALSE

 Next

 If bPrime then

 DebugTrace(@ON, "TRACE.TXT")

 nCount = nCount + 1

 listResult = StrCat(listPrimes, ", ", i)

 DebugTrace(203, listprimes) ; variable info as string

 Else

 DebugTrace(@OFF)

 EndIf

Next

Message("Found ":nCount:" primes", listPrimes)

exit

Message or Pause Statements
Properly placed Message or Pause statements can be used sporadically through out the
script to display values of variables. Here’s an example – version Debug03d.wbt – where
we’ve set a trigger for the 100th iteration of the primary loop.

The fact that our checkpoint report shows listprimes as an empty string ("[]") is
another indication of what’s going wrong. The Pause function could report more than
one variable or we could simply exchange the reported variables until we find the
information desired; i.e., the error point.

323

Introduction to Programming

DebugData
DebugData writes data via the Windows OutputDebugString function to the default
destination. The function is generally only useful if you have the proper tools and
hardware to debug Windows applications. In general, for standard retail Windows, the
default destination is COM1. The Windows SDK provides tools (DBWIN) to allow you
to capture the debug data to an alternate device or to a special window.

For users without sophisticated (and expensive) debugging tools, the WIL Debug,
DebugTrace, Pause or the Message function work incredibly well.

Debugging as a Process

The process of debugging an application can take several forms. In one sense, debugging
is an art form; successful artists in the field can command excellent salaries.

For those who are not debug artists, however, there are a series of relatively simply rules
that will locate the majority of the possible problems.

Debug Step 1: Run the Program
The first step in debugging is simply to run the program and to watch for anything
unexpected.

This probably sounds easy enough, and chances are, you will catch the majority of the
possible errors. For one thing, quite a few errors will catch themselves when the program
halts on encountering them.

Also, those errors in the execution, rather than in the code, tend to be quite obvious. Well,
at least they’re obvious in the sense that something is blatantly wrong, even if it’s less
easy to determine exactly where and precisely why. Still, the obvious offers a starting
point, and the rest of the job is simply patience and observation. And, of course, testing.

Debug Step 2: Test the Elements
The second step in debugging is to ensure that all possible elements have been tested.
Earlier, in the Debug02.wbt example, you were challenged to find the error by testing it
during execution, not by looking for it in the code. Were you successful?

That wasn’t that difficult of an exercise.

The point is that a proper debugging operation must exercise every element of a program.
However tedious, all elements—including all cases, conditions, value types, and possible
operations—must be tested.

Testing by Destruction
This could be called the "Dennis the Menace" approach, since it’s modeled on
the old truism that the best way to find out if something can be broken is to give
to a kid to play with.

324

Chapter 15 : When Things Go Wrong

For debugging a program, if you have kids handy, then use them. They are the
ideal instruments of torture, they have the impatience to thoroughly trash
something, and they are blessed with unfettered imaginations. But, if you don’t
have a kid available, ask your spouse, parent, secretary, boss, or someone from
the mailroom.

The primary qualification for your testers is that they know nothing about your
program. If they also know nothing at all about programming, this is a bonus.

To begin:

Tell them—briefly—what you hope the program will do. (If you say too much,
you’ll lose their value as testers by supplying them with your own expectations
and preconceptions.)

Ask them to:

▪ Make a list of anything that seems awkward.

▪ If an error occurs, note what they were doing.

Walk away. If you can’t bring yourself to leave, stay silent and don’t interfere.

When an error occurs:

▪ Do not under any circumstances tell your tester what it was that he or she
should have done.

▪ Do make a note of what the tester did do and think about how to correct the
program so that action will not cause an error again.

▪ Listen carefully. This is likely to be the best feedback you will have. And it is
happening at the best of times—before the program’s flaws become obvious to
everyone.

▪ Say thank you, and if the error is less than fatal, ask your tester to continue.

In this fashion, since your tester doesn’t know your expectations and has no
preconceptions about what the program expects and is ready to accept, the code
and design will get the best possible workout.

Remember, "the fault, dear Brutus, lies not in our stars but in ourselves ..." or,
anyway, in our programs.

Debug Step 3: Watch Branches, Tests, and Variable Tests
Make a list of everywhere in the program that tests are performed on variables or input
information or where branches occur. Then, set breakpoints to halt execution at these
locations, and run through the program again. But this time, use the Set Variable feature
in the Watch window to ensure that all possible branches, tests, and variable types have
been executed. And, of course, make sure that they work appropriately.

We can’t guarantee that these steps will catch every possible error—the Gods of
computers, as well as those of men, frown on perfection. However, they should help you
trap and eliminate almost all bugs.

325

Introduction to Programming

326

Unavoidable Bugs

Not a very reassuring thought, perhaps, but sometimes there are bugs that are not the
responsibility of the programmer. And, worse yet, these can also be the most difficult to
identify.

The difficulty arises because programmers, particularly experienced programmers, have
an acquired (and justified) mindset that tells them two things:

• The bug is going to be the result of some error made by the programmer.
• The bug can be identified and corrected using conventional and familiar practices.

However, when neither of these conditions apply — because the bug is in the
programming language used, in some external library, or in the system itself — the bug
becomes much more difficult to correct, even when it is easily recognizable.

Sheer complexity and the mass of code ensures that all computer languages
contain some bugs. Fortunately, these are usually obscure and rarely
encountered. Unfortunately, when these are encountered, they are often
tenacious and difficult to deal with.

Summary

The biggest secret to debugging is simple: Keep an open mind and observe what is
actually happening. Don’t assume anything. Or, as Sherlock would phrase it, "It is a
prime mistake to theorize in the absence of data."

The process and practice of debugging is not something that can be taught easily or
quickly. It depends on your familiarity with the language being used (10 percent), your
experience in programming (10 percent) and, for the remaining 80 percent, pure sweat,
work, and attention to detail.

In this chapter, you walked though a couple of simple examples as a prelude, and then
you received a guided tour of a much uglier example. The principles, however, in all of
these have been the same: Watch and observe what is actually occurring and relate the
observations to what was expected to happen but did not.

Of course, 99 percent of the time, what you will encounter will be simple errors. Typos
and simple syntax errors. These are the kind of things that demand corrections but don’t
really require debugging.

Still, every now and then, the big one will bite you. When it does, the practices discussed
and illustrated here will be the path to your solution.

But enough about problems. In Chapter 16, to conclude this book, we’ll look at methods
of expanding WinBatch’s capabilities by using the WinBatch Language Extenders.

Chapter 16 : WinBatch Extenders

CHAPTER 16 : WINBATCH EXTENDERS
ADDING EXTENDED AND CUSTOM FUNCTIONS

dynamic link library – Abbreviated DLL. A program module that contains
executable code and data that can be used by an application program, or even by
other DLLs, in performing a specific task.

In the previous chapters, you’ve seen that WinBatch provides a broad choice of
functionality for a wide variety of purposes. However, it’s possible that you may require
additional capabilities for particular applications. To provide even more functions,
WinBatch offers a series of language extenders, as well as the ability to call external
dynamic link libraries (DLLs).

Custom extender DLLs may add nearly any sort of function to the WIL language, from
the mundane network, math, or database extensions to items that can control fancy
peripherals, including laboratory or manufacturing equipment. We’ll talk about custom
DLLs briefly at the end of the chapter.

As "language extenders," WinBatch provides 32-bit versions of a number of DLLs. We’ll
describe the many of the extenders later in the chapter and begin with the more general-
purpose WILX extender.

The WILX Language Extender

To use the WILX extender, your WinBatch application needs to include the following
AddExtender instruction:

AddExtender("wilx44i.dll")

The AddExtender function returns @TRUE if the function succeeds or error on failure.

For each extender (DLL) used, only one call to the AddExtender function is
required. These function calls normally appear at the beginning of the program.
Also, the AddExtender function must be executed before attempting to use any
functions in the extender library.

The WILX language extender is a potpourri of functions. Here, we provide brief
descriptions of these functions to offer you some idea of the available options and
services. For more details on any of these functions, refer to the documentation in the
extender specific help files.

327

Introduction to Programming

Getting Library Information
The xExtenderInfo function returns simple information about the library:

xExtenderInfo(request_#)

WinBatch Studio's syntax color highlighting makes all WIL Extender functions
Pink. Whereas, all standard WIL functions are colorized Blue.

The request number argument can be:

0 Returns the version number for the .DLL

1 Returns the number of functions supported

2 Returns the number of constants recognized

Of these, the use of the version information is obvious, but the remaining two reports
may appear more curious than functional. However, the information may be important
because of WinBatch’s limitations on additional items.

A single extender can up handle up to 500 functions. It is only limited by WIL which
allows you to load a total of 500 extender functions or 10 Extenders, whichever comes
first.

When creating your own custom extenders, the documentation for the functions
added through DLLs should be supplied in a separate help file accompanying
the extender DLL. Information about all of the WinBatch extenders is provided
as online documentation(.CHM help files). For example, the WILX functions
and their arguments are available in the online documentation found in the
WILX.CHM file.

The WIL Extenders provided by Wilson WindowWare are also included in the
ConsolidatedWIL.CHM. Wilson WindowWare offers several different help files
depending on what is installed on the system. The Consolidated WIL Help file
acts as a single resource for many of the various help files. It combines multiple
.CHM files at run time, allowing them to all be consolidated into a single Help
system. So, as you install some new Wilson WindowWare product (i.e. WIL
Extenders) you will see them show up in the table of contents of this help file.

This help file can be accessed from the Windows Start menu (Start | Programs |
WinBatch) or from WinBatch Studio's context menu by clicking the right
mouse button anywhere within an open file.

Converting between Numeric Systems
While WinBatch functions accept only decimal arguments, WILX offers two functions
for performing conversions between numeric systems.

328

Chapter 16 : WinBatch Extenders

The xBaseConvert function performs conversions between different numeric bases:

xBaseConvert(value, from_base, to_base)

The xHex function converts from hexadecimal to decimal:

xHex(hex_val)

Accessing Drives
Three WILX functions provide extended disk/CD access.

The xDiskLabelGet function returns the volume label of the specified drive:

xDiskLabelGet(drive)

This function is useful for identifying a CD or ensuring that the correct CD is in the drive.
It also can be used with other removable media.

The xDriveReady function checks whether the drive is ready:

xDriveReady(drive)

For example, you might use it to check whether a CD is ready for access.

Finally, you can use the xEjectMedia function:

xEjectMedia(drive)

This function is useful for ejecting media from CD (it’s not applicable to hard drives or
floppies).

Accessing Windows API Functions
For those familiar with conventional Windows programming, WILX provides three
functions offering direct access to heavily used Windows API functions.

To get the handle of a child window belonging to a specified parent, use:

xGetChildHwnd(parent-hwnd, child-text, child-seq)

The other two are the "real" MessageBox and SendMessage API functions:

329

Introduction to Programming

xMessageBox(title, text, style)

xSendMessage(hWnd, msg, wparam, lparam)

Verifying Credit Card Numbers
Perhaps one of the more interesting of the WILX provisions is the xVerifyCCard function:

xVerifyCCard(cardnum)

This function performs a simple verification of the credit card number itself. This means
that the function reports whether the format of the credit card number is valid; it does not
report whether the card itself is valid and does not validate a credit card transaction.

Using Utility Functions
Finally, the WILX extender offers two utility functions. The xGetElapsed function is
used with time values:

xGetElapsed(time1, time2)

This function calculates the difference between two values obtained with GetExactTime (a
standard WinBatch function).

The xEnumStreams function is used to enumerate 'named streams' in a file.

xEnumStreams(filename, flags)

This function creates and returns a 2-dimension array. There are [n] rows in the array,
where 'n' is the number of named streams in the file. Each row has 4 columns. Each row
contains information about one returned stream. The columns are as follows:

Column Value

0 stream name

1 stream size

2 stream type -- one of the following values:
Value Meaning
1 Standard data
2 Extended attribute data
3 Security descriptor data

330

Chapter 16 : WinBatch Extenders

4 Alternative data streams
5 Hard link information
6 Property data
7 Objects identifiers
8 Reparse points
9 Sparse file

3 stream attributes -- zero or more of the following values:
Value Meaning
1 Stream contains data that is modified when read
2 Stream contains security data

NETWORK EXTENDERS

WIL Extender Libraries offer extensive functionality for a wide variety of network
systems.

WinBatch does not supply the network functions as part of its core operations.
However many of the networking Extenders are installed by default.

Given the support for network operations, your programs can include a variety of
features:

• Mapping drives

• Adding and removing users and groups

• Setting security permissions for resources

• Get information about the network

Identifying the Network
WinBatch does provide one network function outside the WIL Extender Libraries: the
NetInfo function. This function provides the initial option to identify which networks are
installed and, from this information, to determine which extender library (or libraries)
should be installed.

The NetInfo function is called as:
NetInfo(requestcode)

The requestcode argument can be either of two values:

0 Reports a list of primary network names

1 Reports a secondary network list

331

Introduction to Programming

The NetInfo function is particularly important in a mixed network environment. You
need to determine the types of networks running on a workstation before loading the
appropriate network extender DLLs and calling the corresponding functions for network
operations.

Windows Platform Version
It is also helpful to identify the version of the Windows platform the script is running on.
The WinVersion and WinMetrics functions can be used to determine useful information
about the Windows platform.

The WinVersion function provides the version number of the current Windows system.
WinVersion (level)

The WinMetrics function provides basic Windows system information.
WinMetrics (request#)

The PlatformInfo.wbt program demonstrates using the WinVersion and WinMetrics
function to determine the Windows version, the 'bitness' and the latest service pack that
has been installed.

Querying across the Network

The NetTest.wbt program demonstrates using the network extenders to get information
across a network. It begins by determining the networking capabilities on a system.

NetTest.wbt may require modifications as appropriate for your operating system
and network.

As a simple example, on a home network with a DSL server and firewall, the initial call
to NetInfo reports:

The network type is unique to the running network. This value associates resources with
a specific network when the resources are persistent or stored in links.

332

Chapter 16 : WinBatch Extenders

You can find a complete list of network types in the C header file Winnetwk.h.
The purpose of a header file is to hold declarations for other files to use. Header
files get installed with various Developer tools (i.e. Visual C and Visual C++).
You can also find the contents of these header files online.

Note: RDPNP = Remote Desktop Protocol Network Provider.

At this point, we can use this initial information to decide which network is available.

Once we have information about which network is installed, we can load one (or more) of
the WIL Extender Libraries to provide support for the network. For network operations,
we have a choice of WIL extenders depending on the network and operating system(s) in
use. (Refer to the online documentation for specifics and details.) For our example, with a
Windows 7 system operating on a Windows NT network, the WWWNT34I.DLL is the
appropriate extender for network functions.

Online Documentation

The online documentation for the network extenders is found in the
NetWareX.CHM , Win32Network.CHM and the ADSI.CHM files (in your
\WinBatch directory). The Win32 Network Extender help file appears below:

The network functions are extensive and fall into several different categories
according to operating system and networks supported.

333

Introduction to Programming

ADSI Extender: WWADS44I.DLL

The WinBatch Active Directory Service Interfaces (ADSI) extender provides access to
the powerful functionality of Microsoft's Active Directory Service Interfaces in a style
familiar to WinBatch users. With the ADSI extender, you can manage network resources
in several directory services with a single, easy to use, set of functions.

Please note: We're assuming you have some prior knowledge of how to use
Active Directory Services Interfaces in order to effectively utilize this extender.
Along with a general understanding of ADSI, it goes without saying that you
will need to have knowledge about the directory service that you will be using
this extender to manipulate.

The ADSI extender is used to create directory service objects including users, computers,
groups and organizational units. In addition, you can change object attributes and move
objects between locations. Further, special functions are present for managing object
membership in security and distribution groups; for investigating the directory structure
including LDAP style search functions; and for handling Active Directory object
security.

To access the functions in this extender, add the following to your script:

AddExtender ('WWADS44I.DLL')

Compiler Options for WIL Extenders

The WinBatch+ Compiler supports five options for compiling scripts into executables:

• A standalone Windows EXE file.

• A small Windows EXE file.

• An encoded and encrypted WinBatch script file.

• A password protected WinBatch script file.

• Windows NT native service

When any extender functions are used in a script, the corresponding extender (.DLL)
must be either compiled into the executable or placed where the executable can access it.

The Standalone EXE option of the compiler has an additional button. The EXTENDERS
button displays a list of extenders that can be chosen and compiled into the executable.
You can choose more than one extender.

When a stand-alone executable is launched on a PC, it looks for the necessary DLLs in
the current directory, on the directory path, and in the Windows directory. If the DLLs
are not found, the DLL is automatically written into the current directory.

334

Chapter 16 : WinBatch Extenders

If the DLLs cannot be written for some reason, such as because the directory is
set to be Read Only, the compiled file will not be able to execute.

The DLLs can also be copied into a directory on a computer’s directory path, and the
compiled EXE will find them there and run. The compiler’s Small EXE for Networked
PC's option takes advantage of this. The DLLs need to be placed on the path only once.
Subsequent EXE files installed on this same machine can be compiled under the Small
EXE option.

While prudence recommends against including a directory path with the file name when
calling the AddExtender statement (since paths can change with undesired results), it is
possible to include an explicit reference to the current directory (the directory where the
WIL executable resides) as:

AddExtender(DirScript() : "WWWNT34I.DLL")

Custom Extender DLLs

You’ve seen how the Extender Libraries supplied by WinBatch can provide functionality
beyond the standard procedures available.

In like fashion, third-party developers can also create their own function libraries as
custom extender DLLs, adding virtually any function desired to the WIL language. (A
WIL Extender SDK is available.) As an example, the source code for the 32-bit WILX
extender, discussed at the beginning of this chapter, is included in the WIL-SDK
subdirectory on the WinBatch and WinBatch+Compiler CD-ROM.

To develop custom DLLs, you need to use the appropriate programming tools,
such as Microsoft Visual C++. In fact, creating a custom DLL is not a simple
task, and you should probably have experience in using C/C++ for Windows
programming before attempting to do so.

Summary

This concludes Introduction to Programming. At this point, you’ve gone from learning to
use the WinBatch Studio IDE and creating the simplest possible program to creating
graphics applications and debugging programs. Finally, you’ve learned about using
libraries to extend the functionality supplied by WinBatch.

Although this has not been a brief journey, it has still been only an introduction and the
first step. To go from here to becoming a competent programmer will require work,
practice, work, dedication, work, and intelligence.

Along the way, you will also develop an insight into what isn’t readily visible in your
applications—a sense of what is actually happening and why operations work or fail.

335

Introduction to Programming

336

What you may see has no ready name, but when you learn to recognize it, no name will
be necessary and any single name would be inadequate. However, this is the point where
you begin to become a programmer.

Oh, yes, did I mention early in this book that there would be a test?

There will, except that the test is not in this book … and there are no answers provided to
score the results.

Because the test is simple — programming. And scoring the test is automatic: Do your
programs work, how well do they work, and can people use them?

With that said, it only remains to wish you …

Good luck and happy hacking!

Appendix A: WinBatch Demos

APPENDIX A : WINBATCH DEMOS
REAL WORLD WIL SCRIPTS

Chapter 1 Samples

WordCnt.wbt
;**

;**

;** [Chapter 1]

;** WordCnt.wbt

;** Counts the number of space-delimited words in a text file

;**

;**

; Set working directory to the same directory the script

DirChange(DirScript())

file = AskFileName("Choose a file name", "C:\", "Text
Files|*.txt", "*.txt", 1)

; Open the selected file for text input

hFile = FileOpen(file, "READ")

count = 0

line = FileRead(hFile)

While line != "*EOF*"

 ParseData(Line)

 ; Update number of words

 count = count + param0

 ; Read the next line

 Line = FileRead(hFile)

EndWhile

; Close the input file

FileClose(hFile)

337

Introduction to Programming

; Display the result

Message("Output", "File " : file : " has " : count : " words")

exit

Chapter 2 Samples

Hello World.wbt
;**

;**

;** [Chapter 2]

;** Hello World.wbt

;** Simple script to display 'Hello, World'

;**

;**

Display(5, "Hello, World", "How are you?")

Pause("Okay", "Now, wasn't that easy?")

exit

Chapter 3 Samples

AskYesNo.wbt
;**

;**

;** [Chapter 3]

;** AskYesNo.wbt

;** Simple AskYesNo example

;**

;**

answer = AskYesNo("This is the title", "To be or not to be, that is
the question...")

If answer == @YES

 answerstr = "Yep"

Else

338

Appendix A: WinBatch Demos

 answerstr = "Nope"

Endif

Pause("Answer", answerstr)

exit

:CANCEL

Message("Answer", "CANCELLED!")

AskLine.wbt
;**

;**

;** [Chapter 3]

;** AskLine.wbt

;** Simple AskLine example

;**

;**

sName = AskLine("Question", "What is your name?", "Simon Le'Gree")

Pause("Your name is" , sName)

exit

WILDialog.wbt
;**

;**

;** [Chapter 3]

;** WILDialog.wbt

;** WIL Dialog containing various control types

;**

;**

DirChange(DirScript())

ibVariable1 =
"Red":@tab:"White":@tab:"Blue":@tab:"Green":@tab:"Black":@tab:"Gray":@t
ab:"Orange":@tab:"Yellow":@tab:"Mauve":@tab:"Chartruse":@tab:"Peach":@t
ab:"Apricot"

MyDialogFormat=`WWWDLGED,6.2`

339

Introduction to Programming

MyDialogCaption=`WIL Dialog`

MyDialogX=-1

MyDialogY=-1

MyDialogWidth=392

MyDialogHeight=332

MyDialogNumControls=028

MyDialogProcedure=`DEFAULT`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

MyDialog001=`023,009,180,192,GROUPBOX,"GroupBox_1",DEFAULT,"GroupBox",D
EFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog002=`039,023,038,010,RADIOBUTTON,"RadioButton_1",rbVariable,"Ra
dioButton",1,20,DEFAULT,"Microsoft Sans
Serif|5325|40|34","255|0|0",DEFAULT`

MyDialog003=`039,053,038,008,CHECKBOX,"CheckBox_1",cbVariable1,"CheckBo
x",1,30,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|255|0",DEFAULT`

MyDialog004=`039,075,030,010,EDITBOX,"EditBox_1",ebVariable1,"EditBox",
DEFAULT,40,DEFAULT,"Microsoft Sans Serif|5325|40|34","0|0|255",DEFAULT`

MyDialog005=`039,101,038,010,STATICTEXT,"StaticText_1",DEFAULT,"StaticT
ext",DEFAULT,50,DEFAULT,"Microsoft Sans
Serif|5325|40|34","0|255|255",DEFAULT`

MyDialog006=`039,125,036,010,VARYTEXT,"VaryText_1",vtVariable1,"VaryTex
t",DEFAULT,60,DEFAULT,"Modern|5632|40|65330","128|128|128",DEFAULT`

MyDialog007=`037,147,152,046,MULTILINEBOX,"MultiLineBox_1",mlVariable1,
"MultiLineBox",DEFAULT,70,DEFAULT,"Microsoft Sans
Serif|5325|140|34","255|0|255",DEFAULT`

MyDialog008=`143,023,048,020,PICTUREBUTTON,"PictureButton_1",DEFAULT,"P
ict button 1",2,80,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

MyDialog009=`143,053,048,023,DROPLISTBOX,"DropListBox_1",dlVariable1,DE
FAULT,DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog010=`143,075,046,010,SPINNER,"Spinner_1",spVariable1,"1",DEFAUL
T,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog011=`143,101,044,032,PICTURE,"Picture_1",DEFAULT,"Picture",DEFA
ULT,110,DEFAULT,DEFAULT,DEFAULT,"buddha_figure.bmp"`

MyDialog012=`261,013,100,032,FILELISTBOX,"FileListBox_1",flVariable1,
"WILDialog.wbt",DEFAULT,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog013=`263,067,100,032,ITEMBOX,"ItemBox_1",ibVariable1,DEFAULT,DE
FAULT,130,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog014=`263,119,100,080,CALENDAR,"Calendar_1",caVariable1,DEFAULT,
DEFAULT,140,DEFAULT,DEFAULT`

340

Appendix A: WinBatch Demos

MyDialog015=`025,223,336,074,COMCONTROL,"ComControl_URL",DEFAULT,"http:
//www.winbatch.com",DEFAULT,150,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog016=`103,023,034,008,STATICTEXT,"StaticText_PictureButton",DEFA
ULT,"PictureButton",DEFAULT,160,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|128|0",DEFAULT`

MyDialog017=`103,053,036,008,STATICTEXT,"StaticText_DropListBox",DEFAUL
T,"DropListBox",DEFAULT,170,DEFAULT,"microsoft Sans
Serif|5632|40|34","128|128|0",DEFAULT`

MyDialog018=`103,075,036,008,STATICTEXT,"StaticText_Spinner",DEFAULT,"S
pinner",DEFAULT,180,DEFAULT,"Microsoft Sans
Serif|5632|40|34","128|0|0",DEFAULT`

MyDialog019=`103,103,032,012,STATICTEXT,"StaticText_Picture",DEFAULT,"P
icture",DEFAULT,190,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|255|0",DEFAULT`

MyDialog020=`217,025,028,012,STATICTEXT,"StaticText_FileListBox",DEFAUL
T,"FileListBox",DEFAULT,200,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|0|128",DEFAULT`

MyDialog021=`217,075,028,012,STATICTEXT,"StaticText_ItemBox",DEFAULT,"I
temBox",DEFAULT,210,DEFAULT,"Microsoft Sans
Serif|5632|40|34","128|0|128",DEFAULT`

MyDialog022=`217,147,032,012,STATICTEXT,"StaticText_Calendar",DEFAULT,"
Calendar",DEFAULT,220,DEFAULT,"Microsoft Sans
Serif|5632|40|34","0|128|128",DEFAULT`

MyDialog023=`025,207,044,012,STATICTEXT,"StaticText_COMCONTROL",DEFAULT
,"COMControl",DEFAULT,230,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog024=`000,000,000,000,MENUBAR,"Dialog_Bar"`

MyDialog025=`000,000,000,000,MENUITEM,"mbi1_Help","Dialog_Bar","Help",D
EFAULT,10,DEFAULT`

MyDialog026=`000,000,000,000,MENUITEM,"mbi2_About","mbi1_Help","About",
DEFAULT,10,DEFAULT`

MyDialog027=`121,303,044,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
240,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog028=`235,303,044,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,250,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed = Dialog("MyDialog")

PushButton.wbt
;**

;**

;** [Chapter 3]

;** PushButton.wbt

;** WIL Dialog containing multiple PushButtons

;**

;**

341

Introduction to Programming

PushButtonDialogFormat = `WWWDLGED,6.2`

PushButtonDialogCaption = `Push Button Dialog`

PushButtonDialogX = -1

PushButtonDialogY = -1

PushButtonDialogWidth = 230

PushButtonDialogHeight = 070

PushButtonDialogMinWidth=2 30

PushButtonDialogMinHeight= 070

PushButtonDialogNumControls= 007

PushButtonDialogProcedure = `DEFAULT`

PushButtonDialogFont = `DEFAULT`

PushButtonDialogTextColor = `DEFAULT`

PushButtonDialogBackground = `DEFAULT,DEFAULT`

PushButtonDialogConfig = 0

PushButtonDialog001=`085,049,036,012,PUSHBUTTON,"PushButton_Cancel",DEF
AULT,"Cancel",0,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog002=`017,009,036,012,PUSHBUTTON,"PushButton_1",DEFAULT,
"Push 1",1,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog003=`053,009,036,012,PUSHBUTTON,"PushButton_2",DEFAULT,
"Push 2",2,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog004=`089,009,036,012,PUSHBUTTON,"PushButton_3",DEFAULT,
"Push 3",3,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog005=`125,009,036,012,PUSHBUTTON,"PushButton_4",DEFAULT,
"Push 4",4,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PushButtonDialog006=`161,009,036,012,PUSHBUTTON,"PushButton_5",DEFAULT,
"Push 5",5,60,DEFAULT,DEFIT,DEFAULT,DEFAULT`

PushButtonDialog007=`063,031,088,010,VARYTEXT,"VaryText_1",vtVariable1,
"No buttons have been pushed
yet...",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed=Dialog("PushButtonDialog")

 Select ButtonPushed

 case 1

 vtVariable1 = "The Push button 1 was pushed"

 break

 case 2

342

Appendix A: WinBatch Demos

 vtVariable1 = "The Push button 2 was pushed"

 break

 case 3

 vtVariable1 = "The Push button 3 was pushed"

 break

 case 4

 vtVariable1 = "The Push button 4 was pushed"

 break

 case 5

 vtVariable1 = "The Push button 5 was pushed"

 break

 EndSelect

EndWhile

exit

:CANCEL

 Message("Attention", "The Cancel button was pushed")

 Message("Attention", "...ergo. we're quitting now")

RadioButton.wbt
;**

;**

;** [Chapter 3]

;** RadioButton.wbt

;** WIL Dialog containing multiple RadioButton groupings

;**

;**

; Set default radio buttons

rbColor = 2

rbSize = 3

rbStyle = 1

MyDialogFormat=`WWWDLGED,6.2`

MyDialogCaption=`RadioButton Groupings`

MyDialogX=-1

343

Introduction to Programming

MyDialogY=-1

MyDialogWidth=182

MyDialogHeight=059

MyDialogNumControls=011

MyDialogProcedure=`DEFAULT`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

MyDialog001=`140,006,033,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
10,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog002=`138,041,034,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog003=`001,004,041,011,RADIOBUTTON,"RadioButton_1",rbColor,"Red",
1,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog004=`001,022,041,010,RADIOBUTTON,"RadioButton_2",rbColor,"Blue"
,2,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog005=`001,041,041,011,RADIOBUTTON,"RadioButton_3",rbColor,"Green
",3,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog006=`042,004,042,011,RADIOBUTTON,"RadioButton_4",rbSize,"Small"
,1,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog007=`042,022,042,010,RADIOBUTTON,"RadioButton_5",rbSize,"Medium
",2,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog008=`042,041,042,011,RADIOBUTTON,"RadioButton_6",rbSize,"Large"
,3,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog009=`087,004,041,011,RADIOBUTTON,"RadioButton_7",rbStyle,"Moder
n",1,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog010=`087,022,041,010,RADIOBUTTON,"RadioButton_8",rbStyle,"Class
ic",2,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog011=`087,041,041,011,RADIOBUTTON,"RadioButton_9",rbStyle,"Fancy
",3,110,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("MyDialog")

switch rbColor

 case 1

 color = "Red"

 break

 case 2

 color = "Blue"

344

Appendix A: WinBatch Demos

 break

 case 3

 color = "Green"

 break

endswitch

switch rbSize

 case 1

 size = "Small"

 break

 case 2

 size = "Medium"

 break

 case 3

 size = "Large"

 break

endswitch

switch rbStyle

 case 1

 style = "Modern"

 break

 case 2

 style = "Classic"

 break

 case 3

 style = "Fancy"

 break

endswitch

; Format data to display

data = "Color: " : color : @lf : "Size: " : size : @lf : "Style: ":
style

; Display results

Pause("Results", data)

exit

345

Introduction to Programming

CheckBox.wbt
;**

;**

;** [Chapter 3]

;** CheckBox.wbt

;** WIL Dialog containing multiple CheckBoxes

;**

;**

MyDialogFormat=`WWWDLGED,6.2`

MyDialogCaption=`How do you like your burger?`

MyDialogX=-1

MyDialogY=-1

MyDialogWidth=235

MyDialogHeight=059

MyDialogNumControls=007

MyDialogProcedure=`DEFAULT`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

MyDialog001=`012,031,033,011,PUSHBUTTON,"PushButton_OK",DEFAULT,"Serve"
,1,10,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog002=`188,030,033,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog003=`010,007,042,011,CHECKBOX,"CheckBox_1",cbVariable1,"Mustard
",1,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog004=`050,007,042,011,CHECKBOX,"CheckBox_2",cbVariable2,"Catsup"
,1,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog005=`089,007,041,011,CHECKBOX,"CheckBox_3",cbVariable3,"Mayonna
ise",1,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog006=`134,007,042,011,CHECKBOX,"CheckBox_4",cbVariable4,"Secret
Sauce",1,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog007=`186,007,042,011,CHECKBOX,"CheckBox_5",cbVariable5,"Barbequ
e",1,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("MyDialog")

346

Appendix A: WinBatch Demos

; See if check box was checked

; Build string of ingredients to display to user

ingredients = ''

if cbVariable1 then ingredients = ingredients : @lf : 'Mustard'

if cbVariable2 then ingredients = ingredients : @lf : 'Catsup'

if cbVariable3 then ingredients = ingredients : @lf : 'Mayonnaise'

if cbVariable4 then ingredients = ingredients : @lf : 'Secret Sauce'

if cbVariable5 then ingredients = ingredients : @lf : 'Barbeque'

ingredients = StrSub(ingredients, 2, -1) ; Remove leading @lf

Pause('Hamburger Ingredients', ingredients)

exit

EditBox.wbt
;**

;**

;** [Chapter 3]

;** EditBox.wbt

;** WIL Dialog containing multiple EditBoxes

;**

;**

EditTestFormat=`WWWDLGED,6.2`

EditTestCaption=`Edit Test`

EditTestX=-1

EditTestY=-1

EditTestWidth=218

EditTestHeight=054

EditTestNumControls=006

EditTestProcedure=`DEFAULT`

EditTestFont=`DEFAULT`

EditTestTextColor=`DEFAULT`

EditTestBackground=`DEFAULT,DEFAULT`

EditTestConfig=0

347

Introduction to Programming

EditTest001=`015,035,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
30,32,DEFAULT,DEFAULT,DEFAULT`

EditTest002=`167,035,032,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest003=`117,015,082,010,EDITBOX,"EditBox_Password",ebPswd,DEFAULT,
DEFAULT,20,16,DEFAULT,DEFAULT,DEFAULT`

EditTest004=`015,015,086,010,EDITBOX,"EditBox_Name",ebName,DEFAULT,DEFA
ULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest005=`015,007,040,006,STATICTEXT,"StaticText_1",DEFAULT,"Name",D
EFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest006=`117,005,040,008,STATICTEXT,"StaticText_2",DEFAULT,"Passwor
d",DEFAULT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EditTest")

Pause("Name", ebName)

Pause("Password", ebPswd)

exit

Listbox.wbt
;**

;**

;** [Chapter 3]

;** ListBox.wbt

;** WIL Dialog containing sample Listbox

;**

;**

LBTFormat=`WWWDLGED,6.2`

LBTCaption=`ListBox Test`

LBTX=-1

LBTY=-1

LBTWidth=182

LBTHeight=118

LBTNumControls=005

LBTProcedure=`DEFAULT`

LBTFont=`DEFAULT`

LBTTextColor=`DEFAULT`

348

Appendix A: WinBatch Demos

LBTBackground=`DEFAULT,DEFAULT`

LBTConfig=0

LBT001=`111,045,042,014,PUSHBUTTON,"PushButton_Select",DEFAULT,"Select"
,1,20,32,DEFAULT,DEFAULT,DEFAULT`

LBT002=`111,071,042,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Exit",0
,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

LBT003=`015,007,048,010,STATICTEXT,"StaticText_1",DEFAULT,"Select
color",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

LBT004=`015,023,064,084,ITEMBOX,"ItemBox_1",ibSelected,DEFAULT,DEFAULT,
10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

LBT005=`097,019,076,022,VARYTEXT,"VaryText_1",vtVariable1,"No
selection",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

colorlist =
"Red":@tab:"White":@tab:"Blue":@tab:"Green":@tab:"Gray":@tab:"Black":@t
ab:"Orange":@tab:"Yellow":@tab:"Mauve":@tab:"Chartreuse":@tab:"Peach":@
tab:"Apricot"

ibSelected = colorlist ;initialize ITEMBOX with colorlist

While @TRUE

 ButtonPushed = Dialog("LBT")

 vtVariable1 = ibSelected ; update vary text w/ user selection

 ibSelected = colorlist ; re-initialize ITEMBOX with the colorlist

EndWhile

exit

FileListBox.wbt
;**

;**

;** [Chapter 3]

;** FileListBox.wbt

;** WIL Dialog containing a FileListBox

;**

;**

FileSelectFormat=`WWWDLGED,6.2`

FileSelectCaption=`File Selection Dialog`

FileSelectX=-1

FileSelectY=-1

349

Introduction to Programming

FileSelectWidth=244

FileSelectHeight=106

FileSelectNumControls=007

FileSelectProcedure=`DEFAULT`

FileSelectFont=`DEFAULT`

FileSelectTextColor=`DEFAULT`

FileSelectBackground=`DEFAULT,DEFAULT`

FileSelectConfig=0

FileSelect001=`123,081,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"Sele
ct",1,20,32,DEFAULT,DEFAULT,DEFAULT`

FileSelect002=`177,081,032,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"
Exit",0,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect003=`013,009,080,088,FILELISTBOX,"FileListBox_1",flVariable1,
DEFAULT,DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect004=`109,045,042,008,STATICTEXT,"StaticText_2",DEFAULT,"Selec
tion:",DEFAULT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect005=`109,055,122,012,VARYTEXT,"VaryText_2",vtVariable2,DEFAUL
T,DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect006=`109,017,044,008,STATICTEXT,"StaticText_1",DEFAULT,"Curre
nt Directory:",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect007=`109,027,118,012,VARYTEXT,"VaryText_1",vtVariable1,DEFAUL
T,DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

vtVariable1 = DirScript()

flVariable1 = "*.wbt"

While @TRUE

 ButtonPushed=Dialog("FileSelect")

 vtVariable1 = DirGet() ; update varytext with current directory

 vtVariable2 = flVariable1 ; update varytext with selection

 flVariable1 = "*.wbt" ; redefine filemask for filelistbox

EndWhile

exit

ComControl.wbt
;**

;**

;** [Chapter 3]

;** ComControl.wbt

350

Appendix A: WinBatch Demos

;** WIL Dialog containing a WebBrowser ComControl

;**

;**

strUrl = "http://www.winbatch.com"

MyDialogFormat=`WWWDLGED,6.2`

MyDialogCaption=`WinBatch Web Browser`

MyDialogX=-1

MyDialogY=-1

MyDialogWidth=352

MyDialogHeight=217

MyDialogNumControls=003

MyDialogProcedure=`MyDialogCallbackProc`

MyDialogFont=`DEFAULT`

MyDialogTextColor=`DEFAULT`

MyDialogBackground=`DEFAULT,DEFAULT`

MyDialogConfig=0

MyDialog001=`009,007,120,010,STATICTEXT,"StaticText_URL:",DEFAULT,"URL:
"`:strUrl:`,DEFAULT,3,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MyDialog002=`305,007,036,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exit
",0,2,32,DEFAULT,DEFAULT,DEFAULT`

MyDialog003=`005,025,336,184,COMCONTROL,"ComControl_1",DEFAULT,"`:strUr
l:`",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("MyDialog")

exit

Chapter 4 Samples

StringTest.wbt
;**

;**

;** [Chapter 4]

;** StringTest.wbt

;** Demonstrates string delimiters

;**

;**

351

Introduction to Programming

sQuote = 'A simple string'

Message("This one's easy", sQuote)

sQuote = `It's Tommy this an' Tommy that,`:@CRLF:` an' "Chuck 'im
out, the brute".`:@CRLF:`But it's "Saviour of 'is country,"`:@CRLF:`
when the guns begin to shoot.`:@CRLF:`- R. Kipling`

Message("I quote, of course", sQuote)

Exit

ArrayTest.wbt
;**

;**

;** [Chapter 4]

;** ArrayTest.wbt

;** Demonstrates arrays in WinBatch

;**

;**

nNumber = 1

ArrayTestFormat=`WWWDLGED,6.2`

ArrayTestCaption=`Color Selection`

ArrayTestX=025

ArrayTestY=042

ArrayTestWidth=144

ArrayTestHeight=078

ArrayTestNumControls=006

ArrayTestProcedure=`DEFAULT`

ArrayTestFont=`DEFAULT`

ArrayTestTextColor=`DEFAULT`

ArrayTestBackground=`DEFAULT,DEFAULT`

ArrayTestConfig=0

ArrayTest001=`011,057,034,012,PUSHBUTTON,"PushButton_Test",DEFAULT,"Tes
t",1,10,32,DEFAULT,DEFAULT,DEFAULT`

ArrayTest002=`051,057,034,012,PUSHBUTTON,"PushButton_Add",DEFAULT,"Add"
,2,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

352

Appendix A: WinBatch Demos

ArrayTest003=`091,057,034,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArrayTest004=`013,007,112,012,VARYTEXT,"VaryText_1",sPrompt,DEFAULT,DEF
AULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArrayTest005=`013,039,112,012,VARYTEXT,"VaryText_2",sReport,DEFAULT,DEF
AULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArrayTest006=`041,023,048,012,EDITBOX,"EditBox_1",nNumber,DEFAULT,DEFAU
LT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

; Create an array from a list of elements

ColorArray = Arrayize("White,Yellow,Magenta,Chartreuse,Light Blue,Dark
Blue,Green,Brown,Gray,Black", ",")

; Get the number of elements

nMax = ArrInfo(ColorArray, 1)

While @TRUE

 nSelectedColor = ""

 sPrompt = "Select a color by entering a number from 1 to " : nMax

 ButtonPushed=Dialog("ArrayTest")

 Switch ButtonPushed

 case 1 ; Test button

 If(nNumber > 0 && nNumber <= nMax)

 nSelectedColor = ColorArray[nNumber-1]

 sReport = "The color you selected was " : nSelectedColor

 Else

 sReport = "The color you selected was NOT VALID"

 Endif

 break

 case 2 ; Add button

 Gosub NEWCOLOR

 break

 EndSwitch

EndWhile

exit

;**

353

Introduction to Programming

;**

;** Subroutine

;**

;**

:NEWCOLOR

NewColorFormat=`WWWDLGED,6.2`

NewColorCaption=`New Color Entry`

NewColorX=035

NewColorY=053

NewColorWidth=122

NewColorHeight=054

NewColorNumControls=005

NewColorProcedure=`DEFAULT`

NewColorFont=`DEFAULT`

NewColorTextColor=`DEFAULT`

NewColorBackground=`DEFAULT,DEFAULT`

NewColorConfig=0

NewColor001=`011,035,038,012,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
10,32,DEFAULT,DEFAULT,DEFAULT`

NewColor002=`071,035,038,012,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor003=`021,001,080,012,VARYTEXT,"VaryText_1",sNewColorPrompt,DEFA
ULT,DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor004=`013,017,038,012,STATICTEXT,"StaticText_1",DEFAULT,"Enter
color",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

NewColor005=`057,017,050,012,EDITBOX,"EditBox_1",sNewColor,DEFAULT,DEFA
ULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

nNext = nMax + 1

sNewColorPrompt = "The new item will be #" : nNext

sNewColor = ""

While @True

 ButtonPushed=Dialog("NewColor")

 if sNewColor == "" then continue ; loop until color is specified

 nMax = nNext

 ArrayRedim(ColorArray, nMax)

 ColorArray[nMax-1] = sNewColor

354

Appendix A: WinBatch Demos

 break

Endwhile

return

HugeMath.wbt
;**

;**

;** [Chapter 4]

;** HugeMath.wbt

;** Adds two huge numbers together using the Huge Math Extender

;**

;** Requires that the Huge Math Extender is installed

;** http://files.winbatch.com/wwwftp/wb01/wwhug34i.zip

;**

AddExtender("WWHUG34I.DLL")

num1 = "12345678901234567890"

num2 = "98765432109876543210"

ret = huge_Add(num1, num2)

Message("Result of large number addition", ret)

exit

VariTest.wbt
;**

;**

;** [Chapter 4]

;** VariTest.wbt

;** Demonstrates variable assignments

;**

;**

n = 2

m = 1.01

Message("Result: step 1", "m = " : m : ", n = " : n)

n = n * m

Message("Result: step 2", "m = " : m : ", n = " : n)

355

Introduction to Programming

n = "now I'm a string"

Message("Result: step 3", "m = " : m : ", n = " : n)

n = "2" ; this is a string

m = "2.02" ; also a string representing a floating-point value

m * n ; n is converted to an integer and m to a float

a = m * n

Message("Result: step 4", "m = " : m : ", a = " : a)

n = "two" ; this is a string

m = "two point zero two" ; this is also a string

a = m * n ; we expect this step to fail

Message("Result: step 5", "m = " : m : ", a = " : a)

exit

ListTest.wbt
;**

;**

;** [Chapter 4]

;** ArrayTest.wbt

;** Demonstrates AskItemList function

;**

;**

listFruits = "apple,pear,orange,banana,peach,apricot,plum"

sFruit = AskItemList("Fruits", listFruits, ",", @SORTED, @SINGLE)

Message("The selected fruit is:", sFruit)

exit

Chapter 5 Samples

MathTest.wbt
;**

;**

;** [Chapter 5]

;** MathTest.wbt

;** Demonstrates operators

;**

356

Appendix A: WinBatch Demos

;**

nOperation = 0

MathTestFormat=`WWWDLGED,6.2`

MathTestCaption=`Math Test`

MathTestX=012

MathTestY=031

MathTestWidth=108

MathTestHeight=100

MathTestNumControls=008

MathTestProcedure=`DEFAULT`

MathTestFont=`DEFAULT`

MathTestTextColor=`DEFAULT`

MathTestBackground=`DEFAULT,DEFAULT`

MathTestConfig=0

MathTest001=`009,081,038,012,PUSHBUTTON,"PushButton_Test",DEFAULT,"Test
",1,10,32,DEFAULT,DEFAULT,DEFAULT`

MathTest002=`061,081,038,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exit
",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest003=`011,017,088,012,RADIOBUTTON,"RadioButton_Precedence",nOper
ation,"Precedence",1,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest004=`011,029,088,012,RADIOBUTTON,"RadioButton_2",nOperation,"Di
vision operations",2,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest005=`011,041,088,012,RADIOBUTTON,"RadioButton_3",nOperation,"Mo
dulus operations",3,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest006=`011,053,088,012,RADIOBUTTON,"RadioButton_4",nOperation,"Ex
ponential operations",4,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest007=`011,065,088,012,RADIOBUTTON,"RadioButton_5",nOperation,"Bi
twise Shift operations",5,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

MathTest008=`001,003,104,012,STATICTEXT,"StaticText_1",DEFAULT,"Select
the type of operation to
demonstrate",DEFAULT,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE ; Loop forever

 nOperation = nOperation + 1

357

Introduction to Programming

 if(nOperation > 5) then nOperation = 1

 ButtonPushed = Dialog("MathTest")

 Switch nOperation

 case 1

 gosub precedence

 break

 case 2

 gosub division

 break

 case 3

 gosub modulus

 break

 case 4

 gosub power

 break

 case 5

 gosub testshift

 break

 EndSwitch

Endwhile

exit

:precedence

a = 2.5

b = 3.7

c = (a / b) * 4.1

d = a / (b * 4.1)

Message("Precedence:", "(" : a : " / " : b : ") * 4.1 = " : c :
@CRLF: a : " / (" : b : " * 4.1) = " : d)

return

358

Appendix A: WinBatch Demos

:division

n = 9

m = 3

fResult = n / m

Message("Division: step 1", n : " / " : m : " = " : fResult)

n = 2

m = 3

fResult = n / m

Message("Division: step 2", n : " / " : m : " = " : fResult)

fResult = m / n

Message("Division: step 3", m : " / " : n : " = " : fResult)

n = 3.0

m = 2

fResult = n / m

Message("Division: step 4", n : " / " : m : " = " : fResult)

n = 2

m = 3.0

fResult = n / m

Message("Division: step 5", n : " / " : m : " = " : fResult)

n = 6.0

m = 3.0

fResult = n / m

Message("Division: step 6", n : " / " : m : " = " : fResult)

return

:modulus

n = 6.0

m = 3.0

fResult = n mod m

Message("Modulus: step 1", n : " mod " : m : " = " : fResult)

359

Introduction to Programming

n = 7

m = 3

fResult = n mod m

Message("Modulus: step 2", n : " mod " : m : " = " : fResult)

n = 7.53

m = 3.1

fResult = n mod m

Message("Modulus: step 3", n : " mod " : m : " = " : fResult)

return

:power

n = 2

m = 3

fResult = n ** m

Message("Exponential: step 1", n : " ** " : m : " = " : fResult)

n = 2.5

m = 3

fResult = n ** m

Message("Exponential: step 2", n : " ** " : m : " = " : fResult)

n = -2.5

m = 3

fResult = n ** m

Message("Exponential: step 3", n : " ** " : m : " = " : fResult)

n = 2.5

m = -3

fResult = n ** m

Message("Exponential: step 4", n : " ** " : m : " = " : fResult)

return

:testshift

n = 16393

360

Appendix A: WinBatch Demos

m = 2

fResult = n >> m

Message("Bit Shift: step 1", n : " >> " : m : " = " : fResult)

fResult = n << m

Message("Bit Shift: step 2", n : " << " : m : " = " : fResult)

return

SimpleCalculator.wbt
;**

;**

;** [Chapter 5]

;** SimpleCalculator.wbt

;** WIL Dialog for simple math calculations

;**

;**

CalcFormat=`WWWDLGED,6.2`

CalcCaption=`Simple Calculator`

CalcX=079

CalcY=107

CalcWidth=204

CalcHeight=098

CalcNumControls=012

CalcProcedure=`DEFAULT`

CalcFont=`DEFAULT`

CalcTextColor=`DEFAULT`

CalcBackground=`DEFAULT,DEFAULT`

CalcConfig=0

Calc001=`031,075,064,012,PUSHBUTTON,"PushButton_Ok",DEFAULT,"Ok",1,10,3
2,DEFAULT,DEFAULT,DEFAULT`

Calc002=`121,075,064,012,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cancel
",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc003=`091,025,036,012,RADIOBUTTON,"RadioButton_-",op,"-
",2,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc004=`055,025,036,012,RADIOBUTTON,"RadioButton_+",op,"+",1,40,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT`

361

Introduction to Programming

Calc005=`127,025,036,012,RADIOBUTTON,"RadioButton_*",op,"*",3,50,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT`

Calc006=`163,025,036,012,RADIOBUTTON,"RadioButton_/",op,"/",4,60,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT`

Calc007=`009,025,046,012,STATICTEXT,"StaticText_1",DEFAULT,"Select
Operation",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc008=`009,007,046,012,STATICTEXT,"StaticText_2",DEFAULT,"Enter first
value",DEFAULT,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc009=`009,043,054,012,STATICTEXT,"StaticText_3",DEFAULT,"Enter
second value",DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc010=`009,061,036,012,CHECKBOX,"CheckBox_Exit",stop,"Exit",1,100,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

Calc011=`065,007,112,012,EDITBOX,"EditBox_1",operand1,DEFAULT,DEFAULT,1
10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Calc012=`065,043,112,012,EDITBOX,"EditBox_2",operand2,DEFAULT,DEFAULT,1
20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @true ; Loop forever

 ButtonPushed=Dialog("Calc")

 If stop == 1 Then Exit ; exit?

 ; Repeat loop if either operand is an empty string

 If operand1 == "" Then continue

 If operand2 == "" Then continue

 ; Repeat loop if either operand is not a number

 If ! IsNumber(operand1) Then continue

 If ! IsNumber(operand2) Then continue

 opStr = StrSub("+-*/", op, 1) ; get the operator

 result = operand1 %opStr% operand2 ; execute calculation

 ; show the results

 Message("Output", operand1 : " " : opStr: " " : operand2: " = " :
result)

EndWhile ; repeat until either exit or cancel

exit

362

Appendix A: WinBatch Demos

Chapter 6 Samples

SearchList.txt
MyApp1 Apples Oranges Pears

MyApp2 23 456.4 93.0 128.6 93.2 35.6 87.456 7.65

MyApp3 %n1% %n2% %n3%

SearchTest.wbt
;**

;**

;** [Chapter 6]

;** SearchTest.wbt

;** Open and parse a text file using ParseData

;**

;**

; Set working directory to the same directory the script is in

DirChange(DirScript())

fileCmd = "SearchList.txt"

hFile = FileOpen(fileCmd, "READ") ; open the file and get a handle

While @TRUE

 line = "" ; reset the line string

 line = FileRead(hFile)

 if line == "*EOF*" then break ; break out of while loop

 nCmds = ParseData(line)

 cmdLine = "There are " : nCmds : " commands: |"

 For i = 1 to nCmds

 cmdLine = StrCat(cmdLine, param%i%, " | ")

 Next

 Message("Results", cmdLine)

EndWhile

FileClose(hFile) ; close the input file

363

Introduction to Programming

AskFileText(fileCmd, fileCmd, @UNSORTED, @SINGLE) ; view entire file

exit

SearchTest2.wbt
;**

;**

;** [Chapter 6]

;** SearchTest2.wbt

;** Open and parse a text file using StrScan & StrSub

;**

;**

DirChange(DirScript())

fileCmd = "SearchList.txt"

hFile = FileOpen(fileCmd, "READ") ; open the output file and get a
handle

While @TRUE

 line = "" ; reset the line string

 line = FileRead(hFile)

 If line == "*EOF*" Then Break ; break out of while loop

 nPos1 = 1 ; set starting point

 nCmds = 0 ; zero the count

 bDone = @FALSE ;and set an end flag

 While @TRUE

 nPos2 = StrScan(line, ',: ', nPos1, @FWDSCAN) ; checking for
three characters

 If(nPos2 == 0) ; we've hit the end of the line

 nPos2 = StrLen(line) + 1 ; find end of line

 bDone = @TRUE ; and set an end flag

 Endif

 nCmds = nCmds + 1

 param%nCmds% = StrSub(line, nPos1, nPos2 - nPos1)

 nPos1 = nPos2 + 1 ; set a new starting point

364

Appendix A: WinBatch Demos

 If(bDone == @TRUE) Then Break ; reached end, exit loop

 EndWhile

 param0 = nCmds

 cmdLine = "There are " : nCmds : " commands: | "

 For i = 1 to nCmds

 cmdLine = StrCat(cmdLine, param%i%, " | ")

 Next

 Message("Results", cmdLine)

EndWhile

FileClose(hFile) ; close the input file

AskFileText(fileCmd, fileCmd, @UNSORTED, @SINGLE) ; view entire file

Exit

SearchTest3.wbt
;**

;**

;** [Chapter 6]

;** SearchTest3.wbt

;** Open and parse a text file using ItemCount & ItemExtract

;**

;**

; Set working directory to the same directory the script is in

DirChange(DirScript())

fileCmd = "SearchList.txt"

hFile = FileOpen(fileCmd, "READ") ; open the output file and get a
handle

While @TRUE

 line = "" ; reset the line string

 line = FileRead(hFile)

 If line == "*EOF*" Then Break ; end of file reached

365

Introduction to Programming

 nCmds = ItemCount(line, " ") ; get the number of commands

 For i = 1 to nCmds

 param%i% = ItemExtract(i, line, " ") ; extract each substring

 Next

 cmdLine = "There are " : nCmds : " commands: | "

 For i = 1 to nCmds

 cmdLine = StrCat(cmdLine, param%i%, " | ")

 Next

 Message("Results", cmdLine)

EndWhile

FileClose(hFile) ; close the input file

AskFileText(fileCmd, fileCmd, @UNSORTED, @SINGLE) ; view entire file

exit

SearchTest4.wbt
;**

;**

;** [Chapter 6]

;** SearchTest4.wbt

;** Open and parse a text file using arrays

;**

;**

; Set working directory to the same directory the script is in

DirChange(DirScript())

fileCmd = "SearchList.txt"

ArrayCmd = ArrayFileGet(fileCmd) ; read the file as an array

nSets = ArrInfo(ArrayCmd, 1) ; how many lines were read?

cmdLine = "There are " : nSets : " data sets"

Message("Array Contents", cmdLine)

For i = 1 to nSets

 Message("Set: " : i, ArrayCmd[i-1])

366

Appendix A: WinBatch Demos

Next

AskFileText(fileCmd, fileCmd, @UNSORTED, @SINGLE); view entire file

exit

StrIndex.wbt
;**

;**

;** [Chapter 6]

;** StrIndex.wbt

;** Locates all occurrences of the substring

;**

;**

sSample = "The quick red fox jumped over the lazy brown dog"

sTarget = "brown dog"

nPos = 0

While @TRUE

 nPos = StrIndex(sSample, sTarget, nPos, @FWDSCAN)

 If nPos == 0 Then Break ; time to quit

 Pause("Found at position", nPos)

 nPos = nPos + 1 ; start one place further

EndWhile

exit

Blake.txt
And there is a frown of hate;

And there is a frown of disdain,

And there is a frown of frowns

Which you strive to forget in vain.

 Blake -- The Smile, Stanza 2

SearchReplace.wbt
;**

;**

;** [Chapter 6]

;** SearchReplace.wbt

;** Demonstrates a selective search-and-replace operation. Reads from

367

Introduction to Programming

;** a text file containing an excerpt from Blake's The Smile,

;** where one word is repeated four times in three lines. To show that

;** the replacement is selective rather than global, as would happen

;** using the StrReplace function, we change only the first and third

;** occurrences of the string, leaving the second & fourth as they are

;** in the original.

;**

; Set working directory to the same directory the script is in

DirChange(DirScript())

sFileIn = "Blake.txt"

sFileOut = "Blake.out"

sTarget = "frown"

sReplace = "smile"

nLen = StrLen(sTarget)

nCount = 1

AskFileText(sFileIn, sFileIn, @UNSORTED, @SINGLE) ; view original file

hFileIn = FileOpen(sFileIn, "READ")

If hFileIn ; the source file exists

 hFileOut = FileOpen(sFileOut, "WRITE")

 While @TRUE

 sLineIn = FileRead(hFileIn);

 If sLineIn == "*EOF*" Then Break ; break out of while loop

 nPos = 0

 sLineOut = sLineIn

 While @TRUE

 nPos = StrIndexNc(sLineIn, sTarget, nPos, @FWDSCAN)

 If nPos == 0 Then Break ; that’s it, jump to next line

 If nCount mod 2 == 1

 nPos2 = nPos + nLen

 nLen2 = StrLen(sLineIn) - nPos2 + 1

 sTemp1 = StrSub(sLineIn, 1, nPos-1)

 sTemp2 = StrSub(sLineIn, nPos2, nLen2)

 sLineOut = StrCat(sTemp1, sReplace, sTemp2)

 Endif

368

Appendix A: WinBatch Demos

 nCount = nCount + 1

 nPos = nPos + 1 ; start the next search one place further

 EndWhile

 FileWrite(hFileOut, sLineOut)

 EndWhile

Endif

FileClose(hFileIn) ; close the input file

FileClose(hFileOut) ; close the output file

; view the new file

AskFileText(sFileOut, sFileOut, @UNSORTED, @SINGLE)

exit

StrCmp.wbt
;**

;**

;** [Chapter 6]

;** StrCmp.wbt

;** Demonstrates string comparison

;**

;**

StringCmpFormat=`WWWDLGED,6.2`

StringCmpCaption=`String Comparison`

StringCmpX=025

StringCmpY=042

StringCmpWidth=180

StringCmpHeight=056

StringCmpNumControls=005

StringCmpProcedure=`DEFAULT`

StringCmpFont=`DEFAULT`

StringCmpTextColor=`DEFAULT`

StringCmpBackground=`DEFAULT,DEFAULT`

StringCmpConfig=0

StringCmp001=`005,003,082,012,EDITBOX,"EditBox_1",sTemp1,"one
banana",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

369

Introduction to Programming

StringCmp002=`093,003,080,012,EDITBOX,"EditBox_2",sTemp2,"ONE
APPLE",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

StringCmp003=`007,039,038,012,PUSHBUTTON,"PushButton_Test",DEFAULT,"Tes
t",1,30,32,DEFAULT,DEFAULT,DEFAULT`

StringCmp004=`135,039,038,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

StringCmp005=`007,021,166,012,VARYTEXT,"VaryText_1",sReport,DEFAULT,DEF
AULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("StringCmp")

 nResult = StrCmp(sTemp1, sTemp2)

 Select nResult

 case -1 ; less than

 sResult = " is less than "

 break

 case 0 ; equal

 sResult = " is equal to "

 break

 case 1 ; greater than

 sResult = " is greater than "

 break

 EndSelect

 sReport = '"' : sTemp1 : '"' : sResult: '"' : sTemp2 : '"'

EndWhile

exit

RelationalOperators.wbt
;**

;**

;** [Chapter 6]

;** RelationalOperators.wbt

;** Demonstrates string comparison using relational operators

;**

;**

StringCmpFormat=`WWWDLGED,6.2`

StringCmpCaption=`String Comparison (case sensitive)`

370

Appendix A: WinBatch Demos

StringCmpX=025

StringCmpY=042

StringCmpWidth=180

StringCmpHeight=056

StringCmpNumControls=005

StringCmpProcedure=`DEFAULT`

StringCmpFont=`DEFAULT`

StringCmpTextColor=`DEFAULT`

StringCmpBackground=`DEFAULT,DEFAULT`

StringCmpConfig=0

StringCmp001=`005,003,082,012,EDITBOX,"EditBox_1",sTemp1,"one
apple",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

StringCmp002=`093,003,080,012,EDITBOX,"EditBox_2",sTemp2,"ONE
APPLE",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

StringCmp003=`007,039,038,012,PUSHBUTTON,"PushButton_Test",DEFAULT,"Tes
t",1,30,32,DEFAULT,DEFAULT,DEFAULT`

StringCmp004=`135,039,038,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

StringCmp005=`007,021,166,012,VARYTEXT,"VaryText_1",sReport,DEFAULT,DEF
AULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("StringCmp")

 if sTemp1 == sTemp2 then sResult = " is equal to "

 if sTemp1 > sTemp2 then sResult = " is greater than "

 if sTemp1 < sTemp2 then sResult = " is less than "

 sReport = '"' : sTemp1 : '"' : sResult : '"' : sTemp2 : '"'

EndWhile

exit

Parts.lst
Webley Defaminizer 5 2456-3468-8921 27

Finagle Bolix Grinder 2 3905-1298-7892 12B

Acme Jetpack 3 9834-0909-8721 14

Hobart Skyhook 1 6435-2348-0971 8E

Forward Mass Detector 9 3498-3465-1871 5

Dyson Sphere 1 0000-0000-0001 M27-139-235-890

Niven Transporter (Pad model) 3 9872-2317-2345 17A, 18B, 21C

371

Introduction to Programming

Murphey's Law Guide 2 1313-9872-3458 ??

ListSelection.wbt
;**

;**

;** [Chapter 6]

;** ListSelection.wbt

;** Demonstrates demonstrates loading a listbox and making a selection

;**

;**

DirChange(DirScript())

SelectionFormat=`WWWDLGED,6.2`

SelectionCaption=`Acme Parts Catalog`

SelectionX=057

SelectionY=074

SelectionWidth=114

SelectionHeight=160

SelectionNumControls=007

SelectionProcedure=`DEFAULT`

SelectionFont=`DEFAULT`

SelectionTextColor=`DEFAULT`

SelectionBackground=`DEFAULT,DEFAULT`

SelectionConfig=0

Selection001=`001,001,108,106,ITEMBOX,"ItemBox_1",listDisplay,DEFAULT,D
EFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection002=`007,145,034,012,PUSHBUTTON,"PushButton_Check",DEFAULT,"Ch
eck",1,20,32,DEFAULT,DEFAULT,DEFAULT`

Selection003=`049,145,034,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection004=`005,113,036,012,VARYTEXT,"VaryText_1",sItemSelect,"Item",
DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection005=`005,129,036,012,VARYTEXT,"VaryText_2",sStkQuant,"Quant",D
EFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection006=`047,113,046,012,VARYTEXT,"VaryText_3",sPN,"P/N",DEFAULT,6
0,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection007=`047,129,046,012,VARYTEXT,"VaryText_4",sLoc,"Loc",DEFAULT,
70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

372

Appendix A: WinBatch Demos

fileIn = "Parts.lst" ; source file for data

listItem = "" ; initialize all of the lists

listStkPN = ""

listStkQuant = ""

listStkLoc = ""

listDisplay = ""

nItemCount = 1

hFileIn = FileOpen(fileIn, "READ") ; open input file and get a handle

While @TRUE

 sLineIn = FileRead(hFileIn)

 If sLineIn == "*EOF*" Then Break ; break out of while loop

 If sLineIn == "" Then Continue ; repeat while loop

 sListItem = ItemExtract(1, sLineIn, @TAB) ; extract item name

 sListItem = StrFix(sListItem, "", 100) ; pad with spaces

 sListItem = StrCat(sListItem, nItemCount) ; then add the index
number

 listItem = ItemInsert(sListItem, 0, listItem, @TAB) ; insert at
first of list

 sListItem = ItemExtract(2, sLineIn, @TAB) ; extract quantity

 listStkQuant = ItemInsert(sListItem, -1, listStkQuant, @TAB) ;
insert at end of list

 sListItem = ItemExtract(3, sLineIn, @TAB) ; extract P/N

 listStkPN = ItemInsert(sListItem, -1, listStkPN, @TAB) ; insert
at end of list

 sListItem = ItemExtract(4, sLineIn, @TAB) ; extract location

 listStkLoc = ItemInsert(sListItem, -1, listStkLoc, @TAB) ;
insert at end of list

 nItemCount = nItemCount + 1

EndWhile

FileClose(hFileIn) ; close the input file

While @TRUE

373

Introduction to Programming

 listDisplay = ItemSort(listItem, @TAB) ; initialize listbox with
sorted list

 ButtonPushed=Dialog("Selection")

 If listDisplay != "" ; is there a selection?

 nLen = StrLen(listDisplay) ; get entry length

 sIndex = StrSub(listDisplay, nLen - 10, -1) ; get rightmost
chars

 sIndex = StrTrim(sIndex) ; trim for index value

 sItemSelect = StrSub(listDisplay, 1, nLen - 10) ; drop
rightmost chars

 sItemSelect = StrTrim(sItemSelect) ; trim for item name

 ; get the rest of the particulars from the separate lists

 sStkQuant = "In stock: ":ItemExtract(sIndex, listStkQuant, @TAB)

 sPN = "P/N: ": ItemExtract(sIndex, listStkPN, @TAB)

 sLoc = "Location: ": ItemExtract(sIndex, listStkLoc, @TAB)

 EndIf

EndWhile

exit

ListSelection2.wbt
;**

;**

;** [Chapter 6]

;** ListSelection2.wbt

;** Demonstrates a slightly different method of loading a

;** listbox and making a selection

;**

;**

DirChange(DirScript())

SelectionFormat=`WWWDLGED,6.2`

SelectionCaption=`Acme Parts Catalog`

SelectionX=057

SelectionY=074

SelectionWidth=114

SelectionHeight=160

SelectionNumControls=007

374

Appendix A: WinBatch Demos

SelectionProcedure=`DEFAULT`

SelectionFont=`DEFAULT`

SelectionTextColor=`DEFAULT`

SelectionBackground=`DEFAULT,DEFAULT`

SelectionConfig=0

Selection001=`001,001,108,106,ITEMBOX,"ItemBox_1",listDisplay,DEFAULT,D
EFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection002=`007,145,034,012,PUSHBUTTON,"PushButton_Check",DEFAULT,"Ch
eck",1,20,32,DEFAULT,DEFAULT,DEFAULT`

Selection003=`049,145,034,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection004=`005,113,036,012,VARYTEXT,"VaryText_1",sItemSelect,"Item",
DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection005=`005,129,036,012,VARYTEXT,"VaryText_2",sStkQuant,"Quant",D
EFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection006=`047,113,046,012,VARYTEXT,"VaryText_3",sPN,"P/N",DEFAULT,6
0,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Selection007=`047,129,046,012,VARYTEXT,"VaryText_4",sLoc,"Loc",DEFAULT,
70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

fileIn = "Parts.lst" ; source file for data

listItem = "" ; initialize all of the lists

listStkData = ""

hFileIn = FileOpen(fileIn, "READ") ; open the input file and get a
handle

While @TRUE

 sLineIn = FileRead(hFileIn)

 If sLineIn == "*EOF*" Then Break ; break out of while loop

 If sLineIn == "" Then Continue ; repeat loop

 sListItem = ItemExtract(1, sLineIn, @TAB) ; extract the item name

 listItem = ItemInsert(sListItem, -1, listItem, @TAB) ; insert at
end of list

 listStkData = ItemInsert(listStkData, -1, sLineIn, @CR) ; insert
at end of list

EndWhile

FileClose(hFileIn) ; close the input file

While @TRUE

375

Introduction to Programming

 listDisplay = ItemSort(listItem, @TAB) ; initialize listbox with
sorted list

 ButtonPushed = Dialog("Selection")

 If listDisplay != "" ; is there a selection?

 sItemSelect = listDisplay ; copy to report display

 For i = 1 to ItemCount(listStkData, @CR)

 listTemp = ItemExtract(i, listStkData, @CR)

 If ItemLocate(sItemSelect, listTemp, @TAB) == 1 Then Break

 Next

 ; get the rest of the particulars from the sublist

 sStkQuant = "In stock: " : ItemExtract(2, listTemp, @TAB)

 sPN = "P/N: " : ItemExtract(3, listTemp, @TAB)

 sLoc = "Location: " : ItemExtract(4, listTemp, @TAB)

 EndIf

EndWhile

exit

Password.wbt
;**

;**

;** [Chapter 6]

;** Password.wbt

;** Demonstrates a password with simple encoding

;**

;**

PasswordEntryFormat=`WWWDLGED,6.2`

PasswordEntryCaption=`Enter a password and confirm`

PasswordEntryX=012

PasswordEntryY=031

PasswordEntryWidth=094

PasswordEntryHeight=056

PasswordEntryNumControls=005

PasswordEntryProcedure=`DEFAULT`

PasswordEntryFont=`DEFAULT`

PasswordEntryTextColor=`DEFAULT`

PasswordEntryBackground=`DEFAULT,DEFAULT`

376

Appendix A: WinBatch Demos

PasswordEntryConfig=0

PasswordEntry001=`005,009,032,012,STATICTEXT,"StaticText_Password",DEFA
ULT,"Password",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PasswordEntry002=`005,023,032,012,STATICTEXT,"StaticText_Confirm",DEFAU
LT,"Confirm",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PasswordEntry003=`037,009,050,012,EDITBOX,"EditBox_1",pw_Password1,DEFA
ULT,DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PasswordEntry004=`037,023,050,012,EDITBOX,"EditBox_2",pw_Password2,DEFA
ULT,DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PasswordEntry005=`017,039,050,012,PUSHBUTTON,"PushButton_OK",DEFAULT,"O
K",1,50,32,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 pw_Password1 = ""

 pw_Password2 = ""

 ButtonPushed=Dialog("PasswordEntry")

 If((pw_Password1 != "") && (pw_Password1 == pw_Password2))
Then Break

EndWhile

nKeycode = 0

For i = 1 to StrLen(pw_Password1)

 nKeycode = nKeycode + (Char2Num(StrSub(pw_Password1, i, 1)) * i
)

Next

pw_Password = AskPassword("Enter password", "Your checksum is " :
nKeycode)

nCodeTest = 0

For i = 1 to StrLen(pw_Password)

 nCodeTest = nCodeTest + (Char2Num(StrSub(pw_Password, i, 1)) *
i)

Next

If(nCodeTest == nKeyCode) Then Message("Report", "We have a match")

Else Message("Report", "You goofed!")

exit

377

Introduction to Programming

WaitForKey.wbt
;**

;**

;** [Chapter 6]

;** WaitForKey.wbt

;** Demonstrates a the WaitForKey function

;**

;**

BoxOpen("Waiting for keystroke", "Select F1, F2, F5, <spacebar> or
Insert")

nKey = WaitForKey("{F1}", "{F2}", "{F5}", " ", "{INSERT}")

Select nKey

 Case 1

 Message("You pressed", "the F1 key")

 Break

 Case 2

 Message("You pressed", "the F2 key")

 Break

 Case 3

 Message("You pressed", "the F5 key")

 Break

 Case 4

 Message("You pressed", "the spacebar")

 Break

 Case 5

 Message("You pressed", "the Insert key")

 Break

EndSelect

exit

Chapter 7 Samples

Music.txt
SKU TITLE URL

001 The Beat Goes On http://www.youtube.com/watch?v=F5fsqYctXgM

002 Sixteen Tons http://www.youtube.com/watch?v=Joo90ZWrUkU

378

Appendix A: WinBatch Demos

003 Love Potion Number 9
 http://www.youtube.com/watch?v=7rXhXLsNJL8&NR=1

004 Fifty Ways To Leave Your Lover http://www.youtube.com/watch?v=b5--
Sje98jI

005 For All We Know http://www.youtube.com/watch?v=exhiNToY3eI

006 L.A. International
Airport,http://www.youtube.com/watch?v=Aj8f30Iguw0

HyperLink.wbt
;**

;**

;** [Chapter 7]

;** HyperLink.wbt

;** Demonstrates subprocedures and creating formatted files

;** requires music.txt in same directory

;**

DirChange(DirScript())

sFileIn = "music.txt"

sFileOut = ""

gosub selectFile

gosub selectColumn

gosub testSelection

gosub processFile

exit

;==

; Select the input (source) file

;==

:selectFile

 sFileIn= AskFileName("Select tab-delimited source", "", "Text
Files|*.txt", "*.txt", 1)

return

;==

; Show the fields to permit column selection

;==

:selectColumn

379

Introduction to Programming

 SelectColumnFormat=`WWWDLGED,6.2`

 SelectColumnCaption=`Column selection`

 SelectColumnX=035

 SelectColumnY=053

 SelectColumnWidth=147

 SelectColumnHeight=116

 SelectColumnNumControls=008

 SelectColumnProcedure=`DEFAULT`

 SelectColumnFont=`DEFAULT`

 SelectColumnTextColor=`DEFAULT`

 SelectColumnBackground=`DEFAULT,DEFAULT`

 SelectColumnConfig=0

 SelectColumn001=`004,004,067,011,STATICTEXT,"StaticText_1",DEFAULT,"
Select LABEL column",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn002=`004,020,067,067,ITEMBOX,"ItemBox_1",listLabelColumn
,DEFAULT,DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn003=`076,004,067,011,STATICTEXT,"StaticText_2",DEFAULT,"
Select HYPERLINK column",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn004=`076,020,067,067,ITEMBOX,"ItemBox_2",listHyperlinkCo
lumn,DEFAULT,DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn005=`006,089,087,011,STATICTEXT,"StaticText_3",DEFAULT,"
Select output file type",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn006=`006,100,042,011,RADIOBUTTON,"RadioButton_HTML",rbHy
pertext,"HTML",1,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn007=`049,100,043,011,RADIOBUTTON,"RadioButton_TAB-
delimited",rbHypertext,"TAB-
delimited",2,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

 SelectColumn008=`100,097,043,011,PUSHBUTTON,"PushButton_OK",DEFAULT,
"OK",1,80,32,DEFAULT,DEFAULT,DEFAULT`

 listColumns = ""

 listLabelColumn = ""

 listHyperlinkColumn = ""

 hFileIn = FileOpen(sFileIn, "READ"); open the input file and get a
handle

 sLineIn = FileRead(hFileIn)

 For i = 1 to ItemCount(sLineIn, @TAB)

 sEntry = ItemExtract(i, sLineIn, @TAB)

 listColumns = ItemInsert(sEntry, -1, listLabelColumn, @TAB)

380

Appendix A: WinBatch Demos

 listLabelColumn = listColumns

 listHyperlinkColumn = listColumns

 Next

 Dialog("SelectColumn")

return

;==

; Requests confirmation of the file and option selection

;==

:testSelection

 nHyperLink = ItemLocate(listHyperlinkColumn, listColumns, @TAB)

 nLabel = ItemLocate(listLabelColumn, listColumns, @TAB)

 If(nLabel == 0) || (nHyperLink == 0) Then exit

 GoSub formatLine

 sReport = 'The output format will appear in the format:
[':sLineOut:']. If this is correct, select "Yes" to continue.'

 If AskYesNo("Question", sReport) == @NO Then exit

return

;==

; Processes the input file according to selections

;==

:processFile

 sFileIn = FileFullName(sFileIn)

 sFileOut = StrFix(sFileIn, "", StrLen(sFileIn) - 4)

 If rbHypertext == 1 then

 sFileOut = StrCat(sFileOut, ".HTML")

 Else

 sFileOut = StrCat(sFileOut, ".LST")

 EndIf

 hFileOut = FileOpen(sFileOut, "WRITE") ; open the output file and
get a handle

 If rbHypertext == 1

 FileWrite(hFileOut, "<html>")

 FileWrite(hFileOut, "<body>")

 EndIf

 While @TRUE

 sLineIn = FileRead(hFileIn)

381

Introduction to Programming

 If sLineIn == "*EOF*" Then break

 gosub formatLine

 If sRef != ""

 FileWrite(hFileOut, sLineOut)

 EndIf

 EndWhile

 If rbHypertext == 1

 FileWrite(hFileOut, "</body>")

 FileWrite(hFileOut, "</html>")

 EndIf

 FileClose(hFileIn) ; close the input file

 FileClose(hFileOut) ; close the output file

 Message("Done", sFileOut)

Return

;==

; Format the column fields for output

;==

:formatLine

 sTemp = ""

 If rbHyperText == 2

 For i = 1 to (Min(nLabel, nHyperlink) - 1)

 sTemp = StrCat(sTemp, ItemExtract(i, sLineIn, @TAB), "
 ")

 Next

 EndIf

 sRef = ItemExtract(nHyperlink, sLineIn, @TAB)

 sName = ItemExtract(nLabel, sLineIn, @TAB)

 If sRef != ""

 sLineOut = StrCat(sTemp, '', sName,
'
')

 Endif

Return

GetData.wbt
;**

382

Appendix A: WinBatch Demos

;**

;** [Chapter 7]

;** GetData.wbt

;** Creates a list from the contents of a file.

;** Parameters:

;** param1: file to be searched

;** param2: name of var to return

;** param3: name of var to return number of items in list

;**

If param0 < 3 ; insufficient arguments

 Message("Attention","This script is not meant to use used alone.
It is used by other scripts")

 exit

Endif

If IsNumber(param3) Then exit ; parameter 3 isn't a variable name

If IsNumber(param2) Then exit ; parameter 2 isn't a variable name

If IsNumber(param1) Then exit ; parameter 1 isn't a filename

If FileExist(param1) == 0

 %param2% = "File Error"

 %param3% = 0

 return

Endif

nIndex = 0 ; initialize a count index

sResult = ""

hFileIn = FileOpen(param1, "READ") ; open the input file and get a
handle

While @TRUE

 sTemp = ""

 sLineIn = FileRead(hFileIn)

 If(sLineIn == "*EOF*") Then break

 nIndex = nIndex + 1

 sTemp = ItemExtract(1, sLineIn, @TAB)

 sResult = StrCat(sResult, sTemp, @TAB)

EndWhile

383

Introduction to Programming

FileClose(hFileIn) ; close the input file

%param2% = sResult ; assign the result string to param2

%param3% = nIndex ; assign the count to param3

Drop(sLineIn, nIndex, sResult, sTemp) ; discard local variables

Return

Parts.lst
Webley Defaminizer 5 2456-3468-8921 27

Finagle Bolix Grinder 2 3905-1298-7892 12B

Acme Jetpack 3 9834-0909-8721 14

Hobart Skyhook 1 6435-2348-0971 8E

Forward Mass Detector 9 3498-3465-1871 5

Dyson Sphere 1 0000-0000-0001 M27-139-235-890

Niven Transporter (Pad model) 3 9872-2317-2345 17A, 18B, 21C

ExternCall.wbt
;**

;**

;** [Chapter 7]

;** ExternCall.wbt

;** Demonstrates calling external .WBT programs as subroutines

;**

;**

nCount = 0

sList = ""

DirChange(DirScript())

; open the source file and return an array of entries

Call('GetData.WBT', '"Parts List.lst" sList nCount')

Message("List count", "Found ":nCount:" items in [":sList:"]")

Call("SortData.WBT", "sList @TAB")

Message("Sort results", "Sorted ":nCount:" items as [":sList:"]")

Exit

SortData.wbt
;**

384

Appendix A: WinBatch Demos

;**

;** [Chapter 7]

;** SortData.wbt

;** Demonstrates sorting a list using ItemSort

;**

;**

If param0 < 2 Then exit

If IsNumber(param1) Then exit ; should be list of data

If IsNumber(param2) Then exit ; should be char (delimiter)

sList = ItemSort(%param1%, %param2%)

return

Run_EXE.wbt
;**

;**

;** [Chapter 7]

;** Run_EXE.wbt

;** Demonstrates launching an external EXE

;**

;**

DirChange(DirScript())

:loop

sFileRun = AskFileName("Select executable application", DirWindows(2),
"EXE Files|*.exe", "notepad.exe", 1)

sArgs = AskLine("Enter arguments", "Enter arguments: (optional)", "")

if Run(sFileRun, sArgs) then goto loop

Message("Error", "Can not run " : sFileRun)

goto loop

exit

Chapter 8 Samples

Logic.wbt
;**

385

Introduction to Programming

;**

;** [Chapter 8]

;** Logic.wbt

;** Demonstrates Boolean logic

;**

;**

Logic1Format=`WWWDLGED,6.2`

Logic1Caption=`Boolean Logic`

Logic1X=057

Logic1Y=074

Logic1Width=092

Logic1Height=042

Logic1NumControls=005

Logic1Procedure=`DEFAULT`

Logic1Font=`DEFAULT`

Logic1TextColor=`DEFAULT`

Logic1Background=`DEFAULT,DEFAULT`

Logic1Config=0

Logic1001=`002,001,083,011,STATICTEXT,"StaticText_1",DEFAULT,"Enter two
numbers for comparison",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Logic1002=`004,012,038,011,EDITBOX,"EditBox_1",nNumber1,DEFAULT,DEFAULT
,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Logic1003=`047,012,038,011,EDITBOX,"EditBox_2",nNumber2,DEFAULT,DEFAULT
,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Logic1004=`004,025,038,011,PUSHBUTTON,"PushButton_Test",DEFAULT,"Test",
1,40,32,DEFAULT,DEFAULT,DEFAULT`

Logic1005=`047,025,038,011,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exit",
0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed = Dialog("Logic1")

If(nNumber1 - nNumber2)

 Message("Boolean TRUE", nNumber1 : " does not equal " : nNumber2)

Else

 Message("Boolean FALSE", nNumber1 : " equals ": nNumber2)

Endif

386

Appendix A: WinBatch Demos

Exit

Select1.wbt
;**

;**

;** [Chapter 8]

;** Select1.wbt

;** Demonstrates nested if logic

;**

;**

Country1 = "France"

Country2 = "Egypt"

Country3 = "Russia"

Country4 = "Japan"

Country5 = "England"

While @TRUE ; loop forever

 nItem = Random(4) + 1

 CountryKey = Country%nItem%

 sResponse = AskLine("Select1", "What is the capital of " :
CountryKey : "? (case-sensitive)", "")

 If(CountryKey == "France") then

 If(sResponse == "Paris") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "Egypt") then

 If(sResponse == "Cairo") then

 sMessage = "Correct"

387

Introduction to Programming

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "Russia") then

 If(sResponse == "Moscow") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "Japan") then

 If(sResponse == "Tokyo") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Else

 If(CountryKey == "England") then

 If(sResponse == "London") then

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 EndIf

 EndIf

 EndIf

 EndIf

 EndIf

 Message("Your guess was:", sMessage)

Endwhile

exit

Select2.wbt
;**

388

Appendix A: WinBatch Demos

;**

;** [Chapter 8]

;** Select2.wbt

;** Demonstrates nested if..elseif logic

;**

;**

listCountry = "France,Egypt,Russia,Japan,England"

While @TRUE ; loop forever

 nItem = Random(4) + 1

 sCountry = ItemExtract(nItem, listCountry, ",")

 sResponse = AskLine("Select2", "What is the capital of " : sCountry
: "? (case-sensitive)", "")

 If(nItem == 1)

 sCapital = "Paris"

 Elseif(nItem == 2)

 sCapital = "Cairo"

 Elseif(nItem == 3)

 sCapital = "Moscow"

 Elseif(nItem == 4)

 sCapital = "Tokyo"

 Elseif(nItem == 5)

 sCapital = "London"

 EndIf

 If(sResponse == sCapital)

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 Endif

 Message("Your guess was:", sMessage)

EndWhile

exit

389

Introduction to Programming

Select3.wbt
;**

;**

;** [Chapter 8]

;** Select3.wbt

;** Demonstrates switch\case logic

;**

;**

listCountry = "France,Egypt,Russia,Japan,England"

While @TRUE ; loop forever

 nItem = Random(4) + 1

 sCountry = ItemExtract(nItem, listCountry, ",")

 sResponse = AskLine("Select3", "What is the capital of " : sCountry
: "? (case-sensitive)", "")

 Switch nItem

 case 1

 sCapital = "Paris"

 break

 case 2

 sCapital = "Cairo"

 break

 case 3

 sCapital = "Moscow"

 break

 case 4

 sCapital = "Tokyo"

 break

 case 5

 sCapital = "London"

 break

 EndSwitch

 If(sResponse == sCapital)

390

Appendix A: WinBatch Demos

 sMessage = "Correct"

 Else

 sMessage = "Wrong"

 EndIf

 Message("Your guess was:", sMessage)

Endwhile

exit

Prime.wbt
;**

;**

;** [Chapter 8]

;** Prime.wbt

;** Demonstrates for loops by searching for prime numbers

;**

;**

sList = ""

For i = 9 to 1001 by 2

 bPrime = @TRUE

 For j = 3 to Sqrt(i)

 If(i mod j == 0)

 bPrime = @FALSE

 break

 Endif

 Next ; j

 if bPrime then sList = sList : i : " "

Next ; i

Message("Primes found are:", sList)

exit

ForEach.wbt
;**

;**

391

Introduction to Programming

;** [Chapter 8]

;** ForEach.wbt

;** Demonstrates foreach by looping thru elements in an array

;**

;**

strList = "a,b,c,d,e,f"

; Convert list to an array

arrA = ObjectType ("ARRAY", Arrayize (strList, ","))

intItem = 0

; Access each element in the array

ForEach arrElement in arrA

 intItem = intItem + 1

 Message (intItem, arrElement)

Next

exit

Prime2.wbt
;**

;**

;** [Chapter 8]

;** Prime2.wbt

;** Demonstrates while loops by searching for prime numbers

;**

;**

sList = ""

i = 9

While(i < 1001)

 bPrime = @TRUE

 j = 3

 While(j <= Sqrt(i))

 If(i mod j == 0)

 bPrime = @FALSE

 break

 Endif

 j = j + 2

392

Appendix A: WinBatch Demos

 EndWhile

 if bPrime then sList = sList : i : " "

 i = i + 2

EndWhile

Message("Primes found are:", sList)

exit

Chapter 9 Samples

Average.wbt
;**

;**

;** [Chapter 9]

;** Average.wbt

;** Demonstrates the Average function

;**

;**

fList = "1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0"

fAvg = Average(%fList%)

Message("Average", "The average value of ":fList:" is ":fAvg)

exit

Floor_Ceiling.wbt
;**

;**

;** [Chapter 9]

;** Floor_Ceiling.wbt

;** Demonstrates the Floor/Ceiling functions

;**

;**

fVal = AskLine("Ceiling/Floor", "Please enter a decimal number (ie.
1.234)", "3.1415")

nCeiling = Ceiling(fVal)

nFloor = Floor(fVal)

Message("Ceiling and Floor of ":fVal, "Ceiling: ":nCeiling:", Floor:
":nFloor)

393

Introduction to Programming

exit

Decimals.wbt
;**

;**

;** [Chapter 9]

;** Decimals.wbt

;** Demonstrates the Decimals function

;**

;**

fVal = 0.9876543210

Decimals(-1)

Message("Decimals (full)", fVal)

For d = 0 to 10

 Decimals(d)

 Message("Decimals: " : d, fVal)

Next

exit

Min_Max.wbt
;**

;**

;** [Chapter 9]

;** Min_Max.wbt

;** Demonstrates the Min/Max functions

;**

;**

fMin = Min(-7.8, 1.2, 560, 0.34, 45, 6.7, 8.9, -2.3, -90)

fMax = Max(-7.8, 1.2, 560, 0.34, 45, 6.7, 8.9, -2.3, -90)

Message("Min/Max", "The largest value is ":fMax:", the smallest is
":fMin)

exit

TestNumber.wbt
;**

;**

;** [Chapter 9]

394

Appendix A: WinBatch Demos

;** TestNumber.wbt

;** Demonstrates the IsNumber, IsFloat and IsInt functions

;**

;**

sStringVal = "This is not a number"

sFloatVal = "0.0123456"

sIntVal = "123456"

If IsNumber(sStringVal)

 sNumber = "is a number"

Else

 sNumber = "is not a number"

EndIf

If IsFloat(sStringVal)

 sFloat = "is a floating point value"

Else

 sFloat = "is not a floating point value"

EndIf

If IsInt(sStringVal)

 sInt = "is an integer"

Else

 sInt = "is not an integer"

EndIf

Message('Testing',
'"':sStringVal:'"':@CRLF:sNumber:@CRLF:sFloat:@CRLF:sInt)

If IsNumber(sFloatVal)

 sNumber = "is a number"

Else

 sNumber = "is not a number"

EndIf

If IsFloat(sFloatVal)

 sFloat = "is a floating point value"

395

Introduction to Programming

Else

 sFloat = "is not a floating point value"

EndIf

If IsInt(sFloatVal)

 sInt = "is an integer"

Else

 sInt = "is not an integer"

EndIf

Message("Testing", sFloatVal:@CRLF:sNumber:@CRLF:sFloat:@CRLF:sInt)

If IsNumber(sIntVal)

 sNumber = "is a number"

Else

 sNumber = "is not a number"

EndIf

If IsFloat(sIntVal)

 sFloat = "is a floating point value"

Else

 sFloat = "is not a floating point value"

EndIf

If IsInt(sIntVal)

 sInt = "is an integer"

Else

 sInt = "is not an integer"

EndIf

Message("Testing", sIntVal:@CRLF:sNumber:@CRLF:sFloat:@CRLF:sInt)

exit

Random.wbt
;**

;**

;** [Chapter 9]

;** TestNumber.wbt

396

Appendix A: WinBatch Demos

;** Demonstrates the Random function

;**

;**

RandomFormat=`WWWDLGED,6.2`

RandomCaption=`Random`

RandomX=056

RandomY=057

RandomWidth=104

RandomHeight=049

RandomNumControls=005

RandomProcedure=`DEFAULT`

RandomFont=`DEFAULT`

RandomTextColor=`DEFAULT`

RandomBackground=`DEFAULT,DEFAULT`

RandomConfig=0

Random001=`062,001,038,011,EDITBOX,"EditBox_1",nMax,"100",DEFAULT,10,DE
FAULT,DEFAULT,DEFAULT,DEFAULT`

Random002=`004,004,056,011,STATICTEXT,"StaticText_1",DEFAULT,"Enter a
maximum value",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Random003=`006,033,038,011,PUSHBUTTON,"PushButton_1",DEFAULT,"New
Number",1,30,32,DEFAULT,DEFAULT,DEFAULT`

Random004=`004,017,096,011,VARYTEXT,"VaryText_1",sReport,"A random
number will be reported
here",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Random005=`057,033,038,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Canc
el",0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("Random")

 nRandom = Random(nMax)

 sReport = StrCat("The random number is: ", nRandom)

EndWhile

exit

Exponential.wbt
;**

;**

397

Introduction to Programming

;** [Chapter 9]

;** Exponential.wbt

;** Demonstrates the Random function

;**

;**

ExponentialFormat=`WWWDLGED,6.2`

ExponentialCaption=`Exponential`

ExponentialX=056

ExponentialY=057

ExponentialWidth=174

ExponentialHeight=054

ExponentialNumControls=005

ExponentialProcedure=`DEFAULT`

ExponentialFont=`DEFAULT`

ExponentialTextColor=`DEFAULT`

ExponentialBackground=`DEFAULT,DEFAULT`

ExponentialConfig=0

Exponential001=`069,005,038,010,EDITBOX,"EditBox_1",fExp,"2.302585093",
DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Exponential002=`011,005,056,010,STATICTEXT,"StaticText_1",DEFAULT,"Ente
r a value",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Exponential003=`029,035,038,010,PUSHBUTTON,"PushButton_Calculate",DEFAU
LT,"Calculate",1,30,32,DEFAULT,DEFAULT,DEFAULT`

Exponential004=`011,019,156,010,VARYTEXT,"VaryText_1",sReport,"The
exponential value will be reported
here",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Exponential005=`083,035,038,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,
"Cancel",0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("Exponential")

 fVal = Exp(fExp)

 sReport = "The value of Exp(": fExp : ") is: " : fVal

EndWhile

exit

398

Appendix A: WinBatch Demos

LogE.wbt
;**

;**

;** [Chapter 9]

;** LogE.wbt

;** Demonstrates the LogE function

;**

;**

LogEFormat=`WWWDLGED,6.2`

LogECaption=`LogE`

LogEX=056

LogEY=057

LogEWidth=156

LogEHeight=054

LogENumControls=005

LogEProcedure=`DEFAULT`

LogEFont=`DEFAULT`

LogETextColor=`DEFAULT`

LogEBackground=`DEFAULT,DEFAULT`

LogEConfig=0

LogE001=`071,005,038,010,EDITBOX,"EditBox_1",fVal,"100",DEFAULT,10,DEFA
ULT,DEFAULT,DEFAULT,DEFAULT`

LogE002=`013,005,056,010,STATICTEXT,"StaticText_1",DEFAULT,"Enter a
value",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

LogE003=`029,035,038,010,PUSHBUTTON,"PushButton_Calculate",DEFAULT,"Cal
culate",1,30,32,DEFAULT,DEFAULT,DEFAULT`

LogE004=`013,017,132,010,VARYTEXT,"VaryText_1",sReport,"The natural log
will be reported here",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

LogE005=`079,035,038,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cancel
",0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("LogE")

 fExp = LogE(fVal)

 sReport = "The natural log of " : fVal: " is: " : fExp

EndWhile

399

Introduction to Programming

exit

Log10.wbt
;**

;**

;** [Chapter 9]

;** Log10.wbt

;** Demonstrates the Log10 function

;**

;**

Log10Format=`WWWDLGED,6.2`

Log10Caption=`Log10`

Log10X=056

Log10Y=057

Log10Width=158

Log10Height=054

Log10NumControls=005

Log10Procedure=`DEFAULT`

Log10Font=`DEFAULT`

Log10TextColor=`DEFAULT`

Log10Background=`DEFAULT,DEFAULT`

Log10Config=0

Log10001=`069,003,038,010,EDITBOX,"EditBox_1",fVal,"10000",DEFAULT,10,D
EFAULT,DEFAULT,DEFAULT,DEFAULT`

Log10002=`013,005,056,010,STATICTEXT,"StaticText_1",DEFAULT,"Enter a
value",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Log10003=`025,035,038,010,PUSHBUTTON,"PushButton_Calculate",DEFAULT,"Ca
lculate",1,30,32,DEFAULT,DEFAULT,DEFAULT`

Log10004=`011,017,134,010,VARYTEXT,"VaryText_1",sReport,"The base-10
log will be reported here",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Log10005=`075,035,038,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cance
l",0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("Log10")

 fExp = Log10(fVal)

400

Appendix A: WinBatch Demos

 sReport = "The base-10 log of " : fVal : " is: " : fExp

EndWhile

exit

SquareRoot.wbt
;**

;**

;** [Chapter 9]

;** SquareRoot.wbt

;** Demonstrates the Sqrt function

;**

;**

SquareRootFormat=`WWWDLGED,6.2`

SquareRootCaption=`Square Root`

SquareRootX=056

SquareRootY=057

SquareRootWidth=154

SquareRootHeight=058

SquareRootNumControls=005

SquareRootProcedure=`DEFAULT`

SquareRootFont=`DEFAULT`

SquareRootTextColor=`DEFAULT`

SquareRootBackground=`DEFAULT,DEFAULT`

SquareRootConfig=0

SquareRoot001=`063,003,038,010,EDITBOX,"EditBox_1",fVal,"456",DEFAULT,1
0,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

SquareRoot002=`005,005,056,010,STATICTEXT,"StaticText_1",DEFAULT,"Enter
a value",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

SquareRoot003=`025,037,038,010,PUSHBUTTON,"PushButton_Calculate",DEFAUL
T,"Calculate",1,30,32,DEFAULT,DEFAULT,DEFAULT`

SquareRoot004=`005,019,132,010,VARYTEXT,"VaryText_1",sReport,"The
square root will be reported
here",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

SquareRoot005=`075,037,038,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"
Cancel",0,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

401

Introduction to Programming

 ButtonPushed = Dialog("SquareRoot")

 fSquareRoot = Sqrt(Fabs(fVal))

 sSign = ""

 if fVal != Fabs(fVal) then sSign = "i"

 sReport = "The square root of " : fVal : " is: " : fSquareRoot :
sSign

EndWhile

exit

Trig.wbt
;**

;**

;** [Chapter 9]

;** Trig.wbt

;** Demonstrates the trigonometric operations

;**

;**

TrigFormat=`WWWDLGED,6.2`

TrigCaption=`Trig`

TrigX=056

TrigY=056

TrigWidth=102

TrigHeight=073

TrigNumControls=008

TrigProcedure=`DEFAULT`

TrigFont=`DEFAULT`

TrigTextColor=`DEFAULT`

TrigBackground=`DEFAULT,DEFAULT`

TrigConfig=0

Trig001=`060,001,035,011,EDITBOX,"EditBox_1",nDegrees,"135",DEFAULT,10,
DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Trig002=`004,001,056,011,STATICTEXT,"StaticText_1",DEFAULT,"Enter angle
in degrees",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Trig003=`002,017,096,011,VARYTEXT,"VaryText_1",sReport,"The trigometric
values appear here",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

402

Appendix A: WinBatch Demos

Trig004=`004,026,094,011,VARYTEXT,"VaryText_2",sSine,DEFAULT,DEFAULT,40
,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Trig005=`004,036,094,011,VARYTEXT,"VaryText_3",sCosine,DEFAULT,DEFAULT,
50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Trig006=`004,046,094,010,VARYTEXT,"VaryText_4",sTangent,DEFAULT,DEFAULT
,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Trig007=`004,058,035,011,PUSHBUTTON,"PushButton_Calculate",DEFAULT,"Cal
culate",1,70,32,DEFAULT,DEFAULT,DEFAULT`

Trig008=`060,058,035,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cancel
",0,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

fSine = 0.0

fCosine = 0.0

fTangent = 0.0

While @TRUE

 ButtonPushed = Dialog("Trig")

 While(nDegrees < -360)

 nDegrees = nDegrees + 360

 EndWhile

 While(nDegrees > 360)

 nDegrees = nDegrees - 360

 EndWhile

 fRadians = nDegrees * @DEG2RAD

 fSine = Sin(fRadians)

 fCosine = Cos(fRadians)

 fTangent = Tan(fRadians)

 sReport = StrCat("For an angle of ", nDegrees, " degrees:")

 sSine = StrCat("the sine is ", fSine)

 sCosine = StrCat("the cosine is ", fCosine)

 sTangent = StrCat("the tangent is ", fTangent)

EndWhile

exit

ArcSin.wbt
;**

;**

;** [Chapter 9]

403

Introduction to Programming

;** ArcSin.wbt

;** Demonstrates the ASin function

;**

;**

ArcSinFormat=`WWWDLGED,6.2`

ArcSinCaption=`ArcSin`

ArcSinX=-001

ArcSinY=-001

ArcSinWidth=146

ArcSinHeight=072

ArcSinNumControls=006

ArcSinProcedure=`DEFAULT`

ArcSinFont=`DEFAULT`

ArcSinTextColor=`DEFAULT`

ArcSinBackground=`DEFAULT,DEFAULT`

ArcSinConfig=0

ArcSin001=`099,003,034,010,EDITBOX,"EditBox_1",fSine,"0.70710678",DEFAU
LT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcSin002=`003,003,090,010,STATICTEXT,"StaticText_1",DEFAULT,"Enter the
sine as -1.0 to 1.0",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcSin003=`015,023,094,010,VARYTEXT,"VaryText_1",sReport,"The angle in
degrees appears here",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcSin004=`015,035,090,010,VARYTEXT,"VaryText_2",sAngle,DEFAULT,DEFAULT
,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcSin005=`023,051,034,010,PUSHBUTTON,"PushButton_Calculate",DEFAULT,"C
alculate",1,50,32,DEFAULT,DEFAULT,DEFAULT`

ArcSin006=`085,051,034,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Canc
el",0,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("ArcSin")

 If(fabs(fSine) > 1.0)

 sReport = "value out of range"

 Else

 fRadians = ASin(fSine)

 nDegrees = fRadians * @RAD2DEG

404

Appendix A: WinBatch Demos

 sReport = StrCat("For a sine of ", fSine)

 sAngle = StrCat("the angle in degrees is ", nDegrees)

 Endif

EndWhile

exit

ArcCosine.wbt
;**

;**

;** [Chapter 9]

;** ArcCosine.wbt

;** Demonstrates the ACos function

;**

;**

ArcCosineFormat=`WWWDLGED,6.2`

ArcCosineCaption=`ArcCosine`

ArcCosineX=-001

ArcCosineY=-001

ArcCosineWidth=132

ArcCosineHeight=060

ArcCosineNumControls=006

ArcCosineProcedure=`DEFAULT`

ArcCosineFont=`DEFAULT`

ArcCosineTextColor=`DEFAULT`

ArcCosineBackground=`DEFAULT,DEFAULT`

ArcCosineConfig=0

ArcCosine001=`081,003,034,010,EDITBOX,"EditBox_1",fCosine,"-
0.70710678",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcCosine002=`005,005,074,010,STATICTEXT,"StaticText_1",DEFAULT,"Enter
the cosine as -1.0 to 1.0",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcCosine003=`013,023,096,010,VARYTEXT,"VaryText_1",sReport,"The angle
in degrees appears here",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcCosine004=`015,033,094,010,VARYTEXT,"VaryText_2",sAngle,DEFAULT,DEFA
ULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcCosine005=`017,045,034,010,PUSHBUTTON,"PushButton_Calculate",DEFAULT
,"Calculate",1,50,32,DEFAULT,DEFAULT,DEFAULT`

405

Introduction to Programming

ArcCosine006=`069,045,034,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"C
ancel",0,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("ArcCosine")

 If(fabs(fCosine) > 1.0)

 sReport = "value out of range"

 Else

 fRadians = ACos(fCosine)

 nDegrees = fRadians * @RAD2DEG

 sReport = StrCat("For a cosine of ", fCosine)

 sAngle = StrCat("the angle in radians is ", nDegrees)

 Endif

EndWhile

exit

ArcTangent.wbt
;**

;**

;** [Chapter 9]

;** ArcTangent.wbt

;** Demonstrates the ATan function

;**

;**

ArcTangentFormat=`WWWDLGED,6.2`

ArcTangentCaption=`ArcTangent`

ArcTangentX=056

ArcTangentY=056

ArcTangentWidth=102

ArcTangentHeight=054

ArcTangentNumControls=006

ArcTangentProcedure=`DEFAULT`

ArcTangentFont=`DEFAULT`

ArcTangentTextColor=`DEFAULT`

ArcTangentBackground=`DEFAULT,DEFAULT`

ArcTangentConfig=0

406

Appendix A: WinBatch Demos

ArcTangent001=`060,001,035,011,EDITBOX,"EditBox_1",fTangent,"2.84147099
",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcTangent002=`004,001,056,011,STATICTEXT,"StaticText_1",DEFAULT,"Enter
the tangent",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcTangent003=`002,018,096,011,VARYTEXT,"VaryText_1",sReport,"The angle
in degrees appears here",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcTangent004=`004,028,094,011,VARYTEXT,"VaryText_2",sAngle,DEFAULT,DEF
AULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ArcTangent005=`004,038,035,010,PUSHBUTTON,"PushButton_Calculate",DEFAUL
T,"Calculate",1,50,32,DEFAULT,DEFAULT,DEFAULT`

ArcTangent006=`060,038,035,010,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"
Cancel",0,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 ButtonPushed = Dialog("ArcTangent")

 If fTangent == 0.0

 sReport = "value out of range"

 Else

 fRadians = ATan(fTangent)

 nDegrees = fRadians * @RAD2DEG

 sReport = StrCat("For a tangent of ", fTangent)

 sAngle = StrCat("the angle in degrees is ", nDegrees)

 Endif

EndWhile

exit

HyperTrig.wbt
;**

;**

;** [Chapter 9]

;** HyperTrig.wbt

;** Demonstrates the Hyperbolic functions

;**

;**

HyperTrigFormat=`WWWDLGED,6.2`

HyperTrigCaption=`Hyperbolic`

HyperTrigX=-001

407

Introduction to Programming

HyperTrigY=-001

HyperTrigWidth=102

HyperTrigHeight=073

HyperTrigNumControls=008

HyperTrigProcedure=`DEFAULT`

HyperTrigFont=`DEFAULT`

HyperTrigTextColor=`DEFAULT`

HyperTrigBackground=`DEFAULT,DEFAULT`

HyperTrigConfig=0

HyperTrig001=`060,001,035,011,EDITBOX,"EditBox_1",nDegrees,"135",DEFAUL
T,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig002=`004,001,056,011,STATICTEXT,"StaticText_1",DEFAULT,"Enter
angle in degrees",DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig003=`002,017,096,011,VARYTEXT,"VaryText_1",sReport,"The
hyperbolic values appear
here",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig004=`004,026,094,011,VARYTEXT,"VaryText_2",sSine,DEFAULT,DEFAU
LT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig005=`004,036,094,011,VARYTEXT,"VaryText_3",sCosine,DEFAULT,DEF
AULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig006=`004,046,094,010,VARYTEXT,"VaryText_4",sTangent,DEFAULT,DE
FAULT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

HyperTrig007=`004,058,035,011,PUSHBUTTON,"PushButton_Calculate",DEFAULT
,"Calculate",1,70,32,DEFAULT,DEFAULT,DEFAULT`

HyperTrig008=`060,058,035,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"C
ancel",0,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

fSine = 0.0

fCosine = 0.0

fTangent = 0.0

While @TRUE

 ButtonPushed = Dialog("HyperTrig")

 While(nDegrees < -360)

 nDegrees = nDegrees + 360

 EndWhile

 While(nDegrees > 360)

 nDegrees = nDegrees - 360

 EndWhile

408

Appendix A: WinBatch Demos

 fRadians = nDegrees * @DEG2RAD

 fSineH = SinH(fRadians)

 fCosineH = CosH(fRadians)

 fTangentH = TanH(fRadians)

 sReport = StrCat("For an angle of ", nDegrees, " degrees:")

 sSine = StrCat("the hyperbolic sine is ", fSineH)

 sCosine = StrCat("the hyperbolic cosine is ", fCosineH)

 sTangent = StrCat("the hyperbolic tangent is ", fTangentH)

EndWhile

exit

TimeCheck.wbt
;**

;**

;** [Chapter 9]

;** TimeCheck.wbt

;** Demonstrates the TimeDate function

;**

;**

TimeCheckFormat=`WWWDLGED,6.2`

TimeCheckCaption=`Time Check`

TimeCheckX=-001

TimeCheckY=-001

TimeCheckWidth=131

TimeCheckHeight=054

TimeCheckNumControls=003

TimeCheckProcedure=`DEFAULT`

TimeCheckFont=`DEFAULT`

TimeCheckTextColor=`DEFAULT`

TimeCheckBackground=`DEFAULT,DEFAULT`

TimeCheckConfig=0

TimeCheck001=`009,031,033,011,PUSHBUTTON,"PushButton_OK",DEFAULT,"Check
",1,10,32,DEFAULT,DEFAULT,DEFAULT`

409

Introduction to Programming

TimeCheck002=`084,031,033,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"C
ancel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

TimeCheck003=`009,010,108,011,VARYTEXT,"dtReport",dtReport,DEFAULT,DEFA
ULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 dtReport = TimeDate()

 ButtonPushed = Dialog("TimeCheck")

EndWhile

exit

TimeCheck2.wbt
;**

;**

;** [Chapter 9]

;** TimeCheck2.wbt

;** Demonstrates the TimeYmdHms function

;**

;**

TimeCheckFormat=`WWWDLGED,6.2`

TimeCheckCaption=`Time Check 2`

TimeCheckX=-001

TimeCheckY=-001

TimeCheckWidth=131

TimeCheckHeight=054

TimeCheckNumControls=003

TimeCheckProcedure=`DEFAULT`

TimeCheckFont=`DEFAULT`

TimeCheckTextColor=`DEFAULT`

TimeCheckBackground=`DEFAULT,DEFAULT`

TimeCheckConfig=0

TimeCheck001=`009,031,033,011,PUSHBUTTON,"PushButton_OK",DEFAULT,"Check
",1,10,32,DEFAULT,DEFAULT,DEFAULT`

TimeCheck002=`084,031,033,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"C
ancel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

410

Appendix A: WinBatch Demos

TimeCheck003=`009,010,108,011,VARYTEXT,"dtReport",dtReport,DEFAULT,DEFA
ULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

While @TRUE

 dtReport = TimeYmdHms()

 ButtonPushed = Dialog("TimeCheck")

EndWhile

exit

TimeCheck3.wbt
;**

;**

;** [Chapter 9]

;** TimeCheck3.wbt

;** Demonstrates Julian dates

;**

;**

TimeCheckFormat=`WWWDLGED,6.2`

TimeCheckCaption=`Time Check 3`

TimeCheckX=-001

TimeCheckY=-001

TimeCheckWidth=131

TimeCheckHeight=054

TimeCheckNumControls=003

TimeCheckProcedure=`DEFAULT`

TimeCheckFont=`DEFAULT`

TimeCheckTextColor=`DEFAULT`

TimeCheckBackground=`DEFAULT,DEFAULT`

TimeCheckConfig=0

TimeCheck001=`009,031,033,011,PUSHBUTTON,"PushButton_OK",DEFAULT,"Check
",1,10,32,DEFAULT,DEFAULT,DEFAULT`

TimeCheck002=`084,031,033,011,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"C
ancel",0,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

TimeCheck003=`009,010,108,011,VARYTEXT,"dtReport",dtReport,DEFAULT,DEFA
ULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

411

Introduction to Programming

While @TRUE

 nJulianDay = TimeJulianDay(TimeYmdHms())

 nDayCount = ((nJulianDay + 5) mod 7)

 sWeekDay = ItemExtract(nDayCount + 1, "Sunday Monday Tuesday
Wednesday Thurday Friday Saturday", " ")

 dtReport = StrCat("Julian date: ", nJulianDay, @CRLF, "Day of week:
", sWeekDay)

 ButtonPushed = Dialog("TimeCheck")

EndWhile

exit

Mortgage.wbt
;**

;**

;** [Chapter 9]

;** Mortgage.wbt

;** Demonstrates a mortgage calculation

;**

;**

DirChange(DirScript())

MortgageFormat=`WWWDLGED,6.2`

MortgageCaption=`Mortgage Calculator`

MortgageX=057

MortgageY=074

MortgageWidth=174

MortgageHeight=079

MortgageNumControls=014

MortgageProcedure=`DEFAULT`

MortgageFont=`DEFAULT`

MortgageTextColor=`DEFAULT`

MortgageBackground=`DEFAULT,DEFAULT`

MortgageConfig=0

Mortgage001=`006,004,050,011,STATICTEXT,"StaticText_1",DEFAULT,"Loan
Amount ($)",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

412

Appendix A: WinBatch Demos

Mortgage002=`004,014,051,010,EDITBOX,"EditBox_1",sPrincipal,"100000",DE
FAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage003=`062,004,050,011,STATICTEXT,"StaticText_2",DEFAULT,"%%
Interest (APR)",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage004=`060,014,051,010,EDITBOX,"EditBox_2",sPercent,"6.5%%",DEFAU
LT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage005=`118,004,050,011,STATICTEXT,"StaticText_3",DEFAULT,"Term
(months)",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage006=`116,014,051,010,EDITBOX,"EditBox_3",sTerm,"360",DEFAULT,60
,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage007=`006,036,054,011,STATICTEXT,"StaticText_4",DEFAULT,"1st
Payment Date",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage008=`004,044,051,011,VARYTEXT,"VaryText_1",sStartDate,"date",DE
FAULT,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage009=`062,036,050,011,STATICTEXT,"StaticText_5",DEFAULT,"Payment
Amount",DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage010=`062,044,050,011,VARYTEXT,"VaryText_2",sPaymentAmt,DEFAULT,
DEFAULT,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage011=`118,036,050,011,STATICTEXT,"StaticText_6",DEFAULT,"Total
Interest",DEFAULT,110,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage012=`118,044,050,011,VARYTEXT,"VaryText_3",sInterestTot,DEFAULT
,DEFAULT,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Mortgage013=`004,062,051,010,PUSHBUTTON,"PushButton_Calculate",DEFAULT,
"Calculate",1,130,32,DEFAULT,DEFAULT,DEFAULT`

Mortgage014=`118,062,050,010,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exit
",0,140,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

bExternal = @FALSE

sStartDate = ""

Decimals(2)

While @TRUE

 ButtonPushed = Dialog("Mortgage")

 fPrincipal = sPrincipal

 fPercentAPR = sPercent

 nTerm = sTerm

 sDate = TimeAdd(TimeYmdHms(), "0000:00:30:00:00:00")

 sStartDate = StrCat(ItemExtract(2, sDate, ":"), " / ",
ItemExtract(3, sDate, ":"), " / ", ItemExtract(1, sDate, ":"))

413

Introduction to Programming

 fPrincipal = StrTrim(fPrincipal) ; trim all leading or trailing
blanks

 If fPrincipal == ""

 Display(10, "Entry error", "A loan amount is required")

 Continue ; loop_on_error

 EndIf

 If ! IsNumber(fPrincipal)

 fPrincipal = StrReplace(fPrincipal, "$", "") ; remove any $

 fPrincipal = StrReplace(fPrincipal, ",", "") ; remove any
commas

 fPrincipal = StrTrim(fPrincipal) ; trim a second time

 If ! IsNumber(fPrincipal) ; test a second time

 sPrincipal = ""

 Display(10, "Entry error", "Principal amount entry is
invalid")

 Continue ; loop_on_error

 EndIf

 EndIf

 If bExternal ; use this code to call the external subroutine

 sPrincipal = fPrincipal

 Call("FormatCurrency.wbt", "sPrincipal")

 Else ; use this code to call the internal subroutine

 sTempStr = fPrincipal

 GoSub Format_Dollar_string

 sPrincipal = sTempStr

 EndIf

 fPercentAPR = StrTrim(fPercentAPR) ; trim all leading or trailing
blanks

 If fPercentAPR == ""

 Display(10, "Entry error", "A loan rate is required")

 Continue ; loop_on_error

 EndIf

 If ! IsNumber(fPercentAPR)

414

Appendix A: WinBatch Demos

 fPercentAPR = StrReplace(fPercentAPR, "%%", "") ; remove %%
sign

 fPercentAPR = StrTrim(fPercentAPR); repeat trim

 If StrScan(fPercentAPR, ".", 1, @FWDSCAN) == 1 ; check leading
decimal

 fPercentAPR = StrCat("0", fPercentAPR) ; add a leading zero

 EndIf

 If ! IsNumber(fPercentAPR) ; check to ensure this is a number

 sPercent = ""

 Display(10, "Entry error", "Percentage entry is invalid")

 Continue ; loop_on_error

 EndIf

 EndIf

 If fPercentAPR >= 1.0 ; must be percentage, not decimal

 fPercentAPR = fPercentAPR / 100.0

 EndIf

 sPercent = StrCat((fPercentAPR * 100.0), "%%") ; reformat for
display

 If nTerm == ""

 Display(10, "Entry error", "A loan term is required")

 Continue ; loop_on_error

 EndIf

 nTerm = StrTrim(nTerm)

 If ! IsNumber(nTerm)

 nTerm = ""

 Display(10, "Entry error", "Loan term entry is invalid")

 Continue ; loop_on_error

 EndIf

 ;==============================

 ; all information is provided, now calculate the payment

 ; and interest for the loan

 ;==============================

 GoSub DoTheMath

EndWhile

415

Introduction to Programming

exit

;;;
;;;;;;;;;;;;;

:DoTheMath

fRate = fPercentAPR / 12.0 ; convert APR to monthly interest
rate

;=== the formula is: ================================

; fPrincipal * fRate

; --------------------------------

; Pmt = 1

; 1 - -----------------------

; (1 + fRate) ** nTerm

;==

fFactor = 1 - (1 / ((1 + fRate) ** nTerm))

fPayment = (fPrincipal * fRate) / fFactor

fInterest = (fPayment * nTerm) - fPrincipal

;=== now format the results before reporting ========

If bExternal ; use this code to call the external subroutine

 sPaymentAmt = fPayment

 Call("FormatCurrency.wbt", "sPaymentAmt")

 sInterestTot = fInterest

 Call("FormatCurrency.wbt", "sInterestTot")

Else ; use this code to call the internal subroutine

 sTempStr = fPayment

 GoSub Format_Dollar_String

 sPaymentAmt = sTempStr

 sTempStr = fInterest

 GoSub Format_Dollar_string

 sInterestTot = sTempStr

EndIf

return

416

Appendix A: WinBatch Demos

;;;
;;;;;;;

:Format_Dollar_String

 sTarget = ""

 nDecimal = StrIndex(sTempStr, ".", 1, @FWDSCAN)

 If(nDecimal)

 nLen = nDecimal

 Else

 nLen = StrLen(sTempStr) + 1

 sTempStr = StrCat(sTempStr, ".00") ; add decimal places

 EndIf

 If(nLen > 4) ; have at least four digits

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 EndIf

 nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN) ; now see if more
commas are needed

 While(nLen > 4)

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN)

 EndWhile

 sTempStr = StrCat("$", sTempStr) ; add the leading dollar sign

Return

FormatCurrency.wbt
;**

;**

;** [Chapter 9]

;** FormatCurrency.wbt

;** Formats a string as currency

417

Introduction to Programming

;** Parameters:

;** param1: string to be formatted

;**

;**

If param0 < 1 ; insufficient arguments

 Message("Format Currency","This is a subroutine meant to be called
from other WBT files and not used directly.")

 exit

Endif

; use variable substitution to store off value of passed varaible

sTempStr = %param1%

nDecimal = StrIndex(sTempStr, ".", 1, @FWDSCAN)

If nDecimal

 nLen = nDecimal

Else

 nLen = StrLen(sTempStr) + 1

 sTempStr = StrCat(sTempStr, ".00") ; add decimal places

EndIf

If nLen > 4 ; have at least four digits

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

EndIf

nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN) ; now see if more commas
are needed

While nLen > 4

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN)

EndWhile

%param1% = StrCat("$", sTempStr) ; add the leading dollar sign

Drop(sTempStr, sSubStr, nLen, nDecimal) ; discard the local variables

418

Appendix A: WinBatch Demos

return

Chapter 10 Samples

CallFileList.wbt
;**

;**

;** [Chapter 10]

;** CallFileList.wbt

;** Displays a file list for selection

;** Parameters:

;** param1: initial filespec

;** defaults to *.*, returns selected file name

;** param2: initial directory (optional)

;** defaults to current dir, returns selected dir.

;**

FileSelectFormat=`WWWDLGED,6.2`

FileSelectCaption=`File Selection`

FileSelectX=080

FileSelectY=040

FileSelectWidth=134

FileSelectHeight=172

FileSelectNumControls=007

FileSelectProcedure=`DEFAULT`

FileSelectFont=`DEFAULT`

FileSelectTextColor=`DEFAULT`

FileSelectBackground=`DEFAULT,DEFAULT`

FileSelectConfig=0

FileSelect001=`005,003,038,012,STATICTEXT,"StaticText_Directory:",DEFAU
LT,"Directory:",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect002=`033,003,096,012,VARYTEXT,"VaryText_1",selectFile,DEFAULT
,DEFAULT,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect003=`005,015,038,012,STATICTEXT,"StaticText_2",DEFAULT,"File
Spec",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect004=`033,015,096,012,EDITBOX,"EditBox_1",selectFile,DEFAULT,D
EFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

419

Introduction to Programming

FileSelect005=`005,031,122,124,FILELISTBOX,"FileListBox_1",selectFile,D
EFAULT,DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect006=`075,153,050,012,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"
&Cancel",0,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileSelect007=`007,153,050,012,PUSHBUTTON,"PushButton_Select",DEFAULT,"
&Select",1,70,32,DEFAULT,DEFAULT,DEFAULT`

selectFile = "*.*" ; set default mask for filelistbox

selectDir = "" ; set default directory

Switch param0

 case 2

 selectDir = %param2% ; two parameters supplied

 ; second must be initial directory

 case 1

 selectFile = %param1% ; first parameter is file spec

 break

 case 0 ; must have one parameter

 exit

EndSwitch

If selectDir != ""

 If DirExist (selectDir) == @FALSE

 Message("Drive or Directory Error", selectDir : " was not a
valid drive/directory specification")

 return

 Endif

 DirChange(selectDir)

EndIf

; Display the dialog, then wait for one of the pushbuttons to be
activated.

While @TRUE

 If Dialog("FileSelect") == @FALSE then return

 ; if a valid file was not selected, redisplay the dialog

 If FileExist(selectFile) then break

Endwhile

If param0 > 1 then %param2% = DirGet() ; optional parameter

%param1% = selectFile ; always return this value

420

Appendix A: WinBatch Demos

return

DirTest.wbt
;**

;**

;** [Chapter 10]

;** DirTest.wbt

;** Calls CallFileList.wbt for a drive/directory/file selection

;**

;**

DirTestFormat=`WWWDLGED,6.2`

DirTestCaption=`Directory Test`

DirTestX=035

DirTestY=053

DirTestWidth=106

DirTestHeight=048

DirTestNumControls=005

DirTestProcedure=`DEFAULT`

DirTestFont=`DEFAULT`

DirTestTextColor=`DEFAULT`

DirTestBackground=`DEFAULT,DEFAULT`

DirTestConfig=0

DirTest001=`063,001,038,012,EDITBOX,"EditBox_1",sDirDrive,DEFAULT,DEFAU
LT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

DirTest002=`063,017,038,012,EDITBOX,"EditBox_2",sFileSpec,"*.*",DEFAULT
,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

DirTest003=`025,033,050,012,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,3
0,32,DEFAULT,DEFAULT,DEFAULT`

DirTest004=`003,017,060,012,STATICTEXT,"StaticText_1",DEFAULT,"Enter a
file specification",DEFAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

DirTest005=`003,003,060,012,STATICTEXT,"StaticText_2",DEFAULT,"Enter a
drive or directory",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

DirChange(DirScript()) ; be sure we're in the right directory

Dialog("DirTest")

421

Introduction to Programming

Call("CallFileList.wbt", "sFileSpec sDirDrive")

Message("The selected file is:", sDirDrive:sFileSpec)

exit

DirTest2.wbt
;**

;**

;** [Chapter 10]

;** DirTest2.wbt

;** Uses AskFileName function for a drive/directory/file selection

;**

;**

sDirDrive = "" ; default is always the current directory

sFileTypes = "All Files|*.*|WIL files|*.wbt;*.mnu|Text files|*.txt|"

sFileSpec = AskFileName("Select a file", sDirDrive, sFileTypes, "",1)

Message("The selected file is:", sFileSpec)

exit

Free Disk Space.wbt
;**

;**

;** [Chapter 10]

;** Free Disk Space.wbt

;** Reports total free space on the system

;**

;**

DirChange(DirScript())

sDrives = DiskScan(6) ; 6 = 4 + 2 = Network and Local Drives

nMax = StrLen(sDrives)

BoxOpen("Network Free Space", "Looking for space on hard drives")

TimeDelay(1)

nDrive = 1

TotalSize = 0

TotalFree = 0

422

Appendix A: WinBatch Demos

DriveReport = "Drive":@TAB:" Total":@TAB:"
Free":@TAB:"%% Free":@CRLF:@CRLF

While @TRUE

 NextDrive = StrSub(sDrives, nDrive, 1)

 nSize = DiskSize(NextDrive) / 1024 ; convert to kilobytes

 nFree = DiskFree(NextDrive) / 1024

 If nSize > 10240

 sUnit = " Mb"

 nSize = nSize / 1024.0 ; convert both to
Megabytes

 nFree = nFree / 1024.0

 Else

 sUnit = " Kb"

 EndIf

 TotalSize = TotalSize + nSize

 sSize = Int(nSize)

 Call("FormatNumber.wbt", "sSize")

 sSize = StrFixCharsL(sSize, " ", 16)

 TotalFree = TotalFree + nFree

 sFree = Int(nFree)

 Call("FormatNumber.wbt", "sFree")

 sFree = StrFixCharsL(sFree, " ", 16)

 If nSize > 0

 sPercent = Int ((nFree / 1.0) / (nSize * 1.0) * 100)

 sPercent = StrCat(sPercent, "%%")

 sPercent = StrFixCharsL(sPercent, " ", 8)

 Else

 sPercent = ""

 EndIf

 BoxText("Checking ":NextDrive:":")

 DriveReport = StrCat(DriveReport, NextDrive, ":")

 DriveReport = StrCat(DriveReport, @TAB, sSize, sUnit)

423

Introduction to Programming

 DriveReport = StrCat(DriveReport, @TAB, sFree, sUnit)

 DriveReport = StrCat(DriveReport, @TAB, sPercent, @CRLF)

 nDrive = nDrive + 3 ; each entry is 3 bytes long

 If nDrive > nMax then break

EndWhile

DriveReport = StrCat(DriveReport, @CRLF, sUnit, "ytes")

sTotalSize = Int(TotalSize)

Call("FormatNumber.wbt", "sTotalSize")

sTotalSize = StrFixLeft(sTotalSize, " ", 16)

n = StrLen(sTotalSize)

DriveReport = StrCat(DriveReport, @TAB, sTotalSize)

sTotalFree = Int(TotalFree)

Call("FormatNumber.wbt", "sTotalFree")

sTotalFree = StrFixCharsL(sTotalFree, " ", 16)

DriveReport = StrCat(DriveReport, @TAB, sTotalFree)

sPercent = Int((TotalFree / 1.0) / (TotalSize * 1.0) * 100)

sPercent = StrFixCharsL(sPercent, " ", 8)

DriveReport = StrCat(DriveReport, @TAB, sPercent, "%%")

BoxShut()

TotalFree = Int(TotalFree)

Call("FormatNumber.wbt", "TotalFree")

Message("Total Space Available = ":TotalFree:" ":sUnit, DriveReport)

Drop(TotalSize, TotalFree, DriveReport, Drives, NextDrive)

exit

FormatNumber.wbt
;**

;**

;** [Chapter 10]

;** FormatNumber.wbt

;** Formats a number string

;** Parameters:

;** param1: string to be formatted

424

Appendix A: WinBatch Demos

;**

If param0 < 1 ; insufficient arguments

 Message("Format Argument","This is a subroutine meant to be called
from other WBT files and not used directly.")

 exit

Endif

sTempStr = %param1%

nDecimal = StrIndex(sTempStr, ".", 1, @FWDSCAN)

If nDecimal

 nLen = nDecimal ; move back one space

Else

 nLen = StrLen(sTempStr) + 1 ; find the string length

EndIf

While nLen > 4

 sSubStr = StrSub(sTempStr, nLen - 3, -1)

 sTempStr = StrSub(sTempStr, 1, nLen - 4)

 sTempStr = StrCat(sTempStr, ",", sSubStr)

 nLen = StrIndex(sTempStr, ",", 1, @FWDSCAN)

EndWhile

%param1% = sTempStr

Drop(sTempStr, sSubStr, nLen, nDecimal) ; discard the local variables

return

Phone.lst
Albert Einstein 34 McFadden Apt 7 Princeton MA 01234 (222) 357-
9246

Han Solo 87 Cloud St #92 Hollywood CA 89034 (111) 345-6789

Joe Friday 1 Police Plaza New York NY 01010 (333) 135-7924

John Jacob Jingleheimer Schmidt 999 9th St Stumptown CA
 95446 (707) 999-8765

Rob Roy 123 4th Ave Gurrock MN 78945 (555) 567-8901

S. F. Katt 1 Park Ave New York NY 10016 (781) 393-3700

Sol Rosencranz #2 Old Stone Bridge Daubmore MS 68758 (999)
555-2345

425

Introduction to Programming

Dilbert Cubicle 23 Silicon Valley CA 95444 (890) 555-5893

ShowList.wbt
;**

;**

;** [Chapter 10]

;** ShowList.wbt

;** Demonstrates AskFileText function

;**

;**

sTemp = AskFileText("Select any name", "Phone.lst", @SORTED, @SINGLE)

if sTemp == "" then exit

sName = ItemExtract(1, sTemp, @TAB)

sAddress1 = ItemExtract(2, sTemp, @TAB)

sAddress2 = ItemExtract(3, sTemp, @TAB)

sCity = ItemExtract(4, sTemp, @TAB)

sState = ItemExtract(5, sTemp, @TAB)

sZip = ItemExtract(6, sTemp, @TAB)

sPhone = ItemExtract(7, sTemp, @TAB)

Message("Thank you", sName:@CRLF:"can be reached at:":@CRLF:sPhone)

exit

PhoneList.wbt
;**

;**

;** [Chapter 10]

;** PhoneList.wbt

;** Demonstrates file operations including:

;** FileOpen, FileRead, FileWrite, FileAppend and FileClose

;**

;**

DirChange(DirScript())

PhoneListFormat=`WWWDLGED,6.2`

426

Appendix A: WinBatch Demos

PhoneListCaption=`Phone List`

PhoneListX=044

PhoneListY=064

PhoneListWidth=246

PhoneListHeight=114

PhoneListNumControls=017

PhoneListProcedure=`DEFAULT`

PhoneListFont=`DEFAULT`

PhoneListTextColor=`DEFAULT`

PhoneListBackground=`DEFAULT,DEFAULT`

PhoneListConfig=0

PhoneList001=`001,003,072,092,ITEMBOX,"ItemBox_1",lbNames,DEFAULT,DEFAU
LT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList002=`075,005,154,012,EDITBOX,"EditBox_1",sName,DEFAULT,DEFAULT
,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList003=`079,019,038,012,STATICTEXT,"StaticText_address",DEFAULT,"
address",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList004=`119,019,110,012,EDITBOX,"EditBox_2",sAddress1,DEFAULT,DEF
AULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList005=`079,033,038,012,STATICTEXT,"StaticText_2",DEFAULT,"addres
s",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList006=`119,033,110,012,EDITBOX,"EditBox_3",sAddress2,DEFAULT,DEF
AULT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList007=`079,049,038,012,STATICTEXT,"StaticText_3",DEFAULT,"city /
state",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList008=`119,049,066,012,EDITBOX,"EditBox_4",sCity,DEFAULT,DEFAULT
,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList009=`191,049,038,012,EDITBOX,"EditBox_5",sState,DEFAULT,DEFAUL
T,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList010=`079,063,038,012,STATICTEXT,"StaticText_4",DEFAULT,"zip
code",DEFAULT,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList011=`119,063,066,012,EDITBOX,"EditBox_6",sZip,DEFAULT,DEFAULT,
110,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList012=`079,077,038,012,STATICTEXT,"StaticText_phone",DEFAULT,"ph
one",DEFAULT,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList013=`119,077,076,012,EDITBOX,"EditBox_7",sPhone,DEFAULT,DEFAUL
T,130,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList014=`157,097,038,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exi
t",0,140,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList015=`003,097,038,012,PUSHBUTTON,"PushButton_Select",DEFAULT,"S
elect",1,150,32,DEFAULT,DEFAULT,DEFAULT`

427

Introduction to Programming

PhoneList016=`107,097,038,012,PUSHBUTTON,"PushButton_3",DEFAULT,"Save
New",2,160,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

PhoneList017=`055,097,038,012,PUSHBUTTON,"PushButton_Clear",DEFAULT,"Cl
ear",3,170,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

sDataFile = "Phone.lst"

hFile = FileOpen(sDataFile, "READ")

listPhone = ""

nCount = 0

While @TRUE

 sLineIn = FileRead(hFile)

 If(sLineIn == "*EOF*") then break

 listPhone = ItemInsert(sLineIn, -1, listPhone, @CR)

 nCount = nCount + 1

EndWhile

FileClose(hFile) ; close the input file

If nCount > 0

 gosub Prepare_List

 nSelect = 1

 gosub Extract_Entry

Endif

; Display List

While @TRUE

 nRequest = Dialog("PhoneList")

 Switch nRequest

 case 1 ; Select -- update the display with a new item

 sSelect = lbNames ; list now has only one entry, the
selection

 For i = 1 to nCount

 sTemp = ItemExtract(i, listPhone, @CR)

 If ItemLocate(sSelect, sTemp, @TAB) == 1 then

 nSelect = i ; this is the item

 gosub Extract_Entry ; update the display

 break

 EndIf

428

Appendix A: WinBatch Demos

 Next

 gosub Prepare_List ; rebuild the name list

 break

 case 2 ; Save New -- update the list and file

 If sName != ""

 nSelect = 0

 sNewEntry = StrCat(sName, @TAB, sAddress1, @TAB,
sAddress2, @TAB, sCity, @TAB, sState, @TAB, sZip, @TAB, sPhone)

 For i = 1 to ItemCount(listPhone, @CR) ; see if there is
an existing match

 sTemp = ItemExtract(i, listPhone, @CR)

 If ItemLocate(sName, sTemp, @TAB) == 1 then

 nSelect = I ; match found, this is the item

 gosub Delete_Entry ; remove the existing entry

 break

 EndIf

 Next

 gosub Add_Entry ; add the new entry to the list

 EndIf

 gosub Prepare_List ; rebuild the name list

 break

 case 3 ; Clear -- clear the current entries but not the list

 gosub Clear_Entry

 gosub Prepare_List

 break

 EndSwitch

EndWhile

exit

:Extract_Entry

 sTemp = ItemExtract(nSelect, listPhone, @CR)

 sName = ItemExtract(1, sTemp, @TAB)

 sAddress1 = ItemExtract(2, sTemp, @TAB)

 sAddress2 = ItemExtract(3, sTemp, @TAB)

429

Introduction to Programming

 sCity = ItemExtract(4, sTemp, @TAB)

 sState = ItemExtract(5, sTemp, @TAB)

 sZip = ItemExtract(6, sTemp, @TAB)

 sPhone = ItemExtract(7, sTemp, @TAB)

return

:Clear_Entry

 sName = ""

 sAddress1 = ""

 sAddress2 = ""

 sCity = ""

 sState = ""

 sZip = ""

 sPhone = ""

return

:Prepare_List

 listPhone = ItemSort(listPhone, @CR)

 lbNames = ""

 For i = 1 to ItemCount(listPhone, @CR)

 sTemp = ItemExtract(i, listPhone, @CR)

 sItem = ItemExtract(1, sTemp, @TAB)

 lbNames = ItemInsert(sItem, -1, lbNames, @TAB)

 Next

return

:Add_Entry

 hFile = FileOpen(sDataFile, "APPEND")

 FileWrite(hFile, sNewEntry)

 FileClose(hFile) ; close the input file

 listPhone = ItemInsert(sNewEntry, -1, listPhone, @CR)

 listPhone = ItemSort(listPhone, @CR)

return

:Delete_Entry

 listPhone = ItemRemove(nSelect, listPhone, @CR)

 hFile = FileOpen(sDataFile, "WRITE")

430

Appendix A: WinBatch Demos

 For i = 1 to ItemCount(listPhone, @CR)

 sTemp = ItemExtract(i, listPhone, @CR)

 FileWrite(hFile, sTemp)

 Next

 FileClose(hFile) ; close the input file

return

Phone.lst
Albert Einstein»34 McFadden Apt 7»Princeton»MA»01234»(222) 357-9246

Han Solo»87 Cloud St #92»Hollywood»CA»89034»(111) 345-6789

Joe Friday»1 Police Plaza »New York»NY»01010»(333) 135-7924

John Jacob Jingleheimer Schmidt»999 9th St»Stumptown»CA»95446»(707)
999-8765

Rob Roy»123 4th Ave»Gurrock»MN»78945»(555) 567-8901

S. F. Katt»1 Park Ave»New York»NY»10016» (781) 393-3700

Sol Rosencranz»#2 Old Stone Bridge»Daubmore»MS»68758»(999) 555-2345

Dilbert»Cubicle 23»Silicon Valley»CA»95444»(890) 555-5893

FileAttr.wbt
;**

;**

;** [Chapter 10]

;** FileAttr.wbt

;** Displays the file name, size, date/time stamp, and attributes.

;** Allows you to "touch" the file and set its attributes.

;**

;**

FileInfoFormat=`WWWDLGED,6.2`

FileInfoCaption=`File Information`

FileInfoX=044

FileInfoY=064

FileInfoWidth=196

FileInfoHeight=098

431

Introduction to Programming

FileInfoNumControls=012

FileInfoProcedure=`DEFAULT`

FileInfoFont=`DEFAULT`

FileInfoTextColor=`DEFAULT`

FileInfoBackground=`DEFAULT,DEFAULT`

FileInfoConfig=0

FileInfo001=`021,005,038,012,STATICTEXT,"StaticText_2",DEFAULT,"File
Name:",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo002=`063,005,124,012,VARYTEXT,"VaryText_2",sFileName,DEFAULT,DE
FAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo003=`021,017,038,012,STATICTEXT,"StaticText_3",DEFAULT,"File
Size:",DEFAULT,50,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo004=`063,017,124,012,VARYTEXT,"VaryText_3",sFileSize,DEFAULT,DE
FAULT,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo005=`003,029,056,012,STATICTEXT,"StaticText_4",DEFAULT,"Date/Ti
me Stamp:",DEFAULT,70,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo006=`063,029,124,012,VARYTEXT,"VaryText_4",sTimeStamp,DEFAULT,D
EFAULT,80,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo007=`019,043,038,012,STATICTEXT,"StaticText_Attributes:",DEFAUL
T,"Attributes:",DEFAULT,90,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo008=`063,043,068,012,EDITBOX,"EditBox_1",sFileAttr,DEFAULT,DEFA
ULT,100,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo009=`031,079,038,012,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,
110,32,DEFAULT,DEFAULT,DEFAULT`

FileInfo010=`101,079,038,012,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Ca
ncel",0,120,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo011=`021,059,050,012,CHECKBOX,"CheckBox_1",cbTouchDate,"Touch
Date",1,130,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

FileInfo012=`087,059,078,012,CHECKBOX,"CheckBox_2",cbFileAttr,"Change
file attributes",1,140,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

sDirDrive = "" ; default is always the current directory

sFileTypes = "All Files|*.*|Executable files|*.exe;*.com|Text
files|*.txt|WIL files|*.wbt;*.mnu|"

curDir = DirGet() ; store the current directory in the variable curDir

If param0 > 0

 sFileName = Param1

Else

 sFileName = AskFileName("Select a file",sDirDrive,sFileTypes,"",1)

Endif

432

Appendix A: WinBatch Demos

sFileSize = FileSize(sFileName) ; obtain the file size

sTimeStamp = FileTimeGet(sFileName) ; obtain the date/time stamps

sFileAttr = FileAttrGet(sFileName) ; obtain the file attributes

Dialog("FileInfo")

if cbTouchDate == 1 then FileTimeTouch(sFileName)

if cbFileAttr == 1 then FileAttrSet(sFileName, sFileAttr)

exit

Binary.wbt
;**

;**

;** [Chapter 10]

;** Binary.wbt

;** Edits the Config.sys file

;** by adding a new line to the bottom of the file.

;**

fs = FileSize("C:\CONFIG.SYS")

; Allocate a buffer the size of your file + 100 bytes.

binbuf = BinaryAlloc(fs+100)

If binbuf == 0

 Message("Error", "BinaryAlloc Failed")

Else

 ; Read the file into the buffer.

 BinaryRead(binbuf, "C:\CONFIG.SYS")

 ; Append a line to the end of the file in buffer.

 BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")

 ; Write modified file back to the file from the buffer.

 BinaryWrite(binbuf, "C:\CONFIG.SYS")

 binbuf = BinaryFree(binbuf)

EndIf

Message("BinaryAlloc", "Done.")

exit

433

Introduction to Programming

Chapter 11 Samples

Hello Windows.wbt
;**

;**

;** [Chapter 11]

;** Hello Windows.wbt

;** Uses Box functions to create a window display

;**

;**

;==

; definitions for assorted colors

;==

;====== gray scale ========

BLACK = " 0, 0, 0"

DKGRAY = " 64, 64, 64"

GRAY = "128, 128, 128"

LTGRAY = "192, 192, 192"

WHITE = "255, 255, 255"

;====== dark colors =======

DKBLUE = " 0, 0, 128"

DKGREEN = " 0, 160, 0"

DKRED = "128, 0, 0"

DKCYAN = " 0, 128, 128"

DKMAGENTA = "128, 0, 128"

BROWN = "128, 128, 0"

;====== light colors ======

BLUE = " 0, 0, 255"

GREEN = " 0, 255, 0"

RED = "255, 0, 0"

CYAN = " 0, 255, 255"

MAGENTA = "255, 0, 255"

YELLOW = "255, 255, 0"

;==

; Window identifiers

434

Appendix A: WinBatch Demos

;==

mainID = 1 ; requires IDs less than 9

drawID = 2

noteID = 3

;==

; Button identifiers

;==

bExit = 1

;==

; Generic Initialization

; allows windows to exit without warning (1)

; + quiet termination (4)

;==

IntControl(12, 5, 0, 0, 0)

;==

; Creates the top-level Window

;==

BoxesUp("100, 100, 900, 900", @NORMAL)

TimeDelay(1)

;==

; This section creates the main window

;==

BoxColor(mainID, BLACK, 7) ; third param sets shaded background

BoxDrawRect(mainID, "0, 0, 1000, 1000", 2) ; size in logical units

BoxCaption(mainID, "Hello Windows.WBT Demo") ; window caption

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill banner box with background color

435

Introduction to Programming

;==

; Next create a 3-D outline around the box

;==

penWidthA = 20 ; note that all units are

line1A = " 0, 0, 1000, 0" ; logical units relative to

line2A = "1000, 1000, 1000, 0" ; the notebox which (by default)

line3A = " 0, 1000, 1000, 1000" ; has a logical size of

line4A = " 0, 0, 0, 1000" ; 1000 x 1000 units

;==

; draw the outer outline

;==

BoxPen(noteID, WHITE, penWidthA) ; line color top and left

BoxDrawLine(noteID, line1A) ; top

BoxDrawLine(noteID, line4A) ; left

BoxPen(noteID, GRAY, penWidthA) ; line color bottom and right

BoxDrawLine(noteID, line2A) ; right

BoxDrawLine(noteID, line3A) ; bottom

;==

; draw the inner outline

;==

penWidthB = 10

line1B = " 40, 150, 960, 150" ; top

line2B = " 960, 840, 960, 150" ; right

line3B = " 40, 840, 960, 840" ; bottom

line4B = " 40, 150, 40, 840" ; left

BoxPen(noteID, WHITE, penWidthB)

BoxDrawLine(noteID, line2B) ; right

BoxDrawLine(noteID, line3B) ; bottom

BoxPen(noteID, GRAY, penWidthB)

BoxDrawLine(noteID, line1B) ; top

BoxDrawLine(noteID, line4B) ; left

;==

436

Appendix A: WinBatch Demos

; Now put text in the banner headline box

;==

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set headline font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; creates the headline text - this line can be copied

; anywhere in the program where the headline needs to be changed

BoxDrawText(noteID, rectNoteText, "Hello Windows", 1, 4)

;==

; And display a message in the window

;==

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font

BoxTextColor(mainID, YELLOW) ; initial font color

BoxDrawText(mainID, "10, 500, 990, 600", "Now, this wasn't too
difficult, was it?", 0, 1 | 4)

;==

; This section creates the Exit buttons

;==

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

;==

; Wait for a button to be selected (clicked)

;==

BoxButtonWait()

exit

Progress.wbt
;**

;**

;** [Chapter 11]

;** Progress.wbt

;** Uses Box functions to create a progress bar display

;**

;**

437

Introduction to Programming

;==================== Generic Initialization ======================;

; allows windows to exit without warning (1) + quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;====== Assorted Colors =======

DKBLUE = " 0, 0, 128"

BLUE = " 0, 0, 255"

LTGRAY = "192, 192, 192"

GRAY = "128, 128, 128"

DKGRAY = " 64, 64, 64"

DKGREEN = " 0, 160, 0"

GREEN = " 0, 255, 0"

RED = "255, 0, 0"

BLACK = " 0, 0, 0"

WHITE = "255, 255, 255"

YELLOW = "255, 255, 0"

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires IDs less than 10

drawID = 2

noteID = 3

progID = 8

bExit = 1 ; buttons must be successive

bBegin = 2

;==

; This section creates the main window

;==

BoxColor(mainID, GREEN, 4) ; third param sets shaded background

BoxCaption(mainID, "Progress.wbt Demo") ; window caption

BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size is in logical
units

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font
information

438

Appendix A: WinBatch Demos

BoxTextColor(mainID, "255, 255, 0") ; initial font color

;==

; And this puts a message in thw window

;==

BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start", 0,
0)

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill the entire banner box with the
background color

;==

; Next create a 3-D outline around the box

;==

notePenWidthA = 20 ; note that all units are

rectNoteLine1A = " 0, 0, 1000, 0" ; logical units relative to

rectNoteline2A = "1000, 1000, 1000, 0" ; the notebox which (by
default)

rectNoteLine3A = " 0, 1000, 1000, 1000" ; has a logical size of

rectNoteLine4A = " 0, 0, 0, 1000" ; 1000 x 1000 units

; draw the outer outline

BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

BoxDrawLine(noteID, rectNoteLine2A)

BoxDrawLine(noteID, rectNoteLine3A)

; draw the inner outline

notePenWidthB = 10

rectNoteLine1B = " 40, 150, 960, 150"

439

Introduction to Programming

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

;==

; Now put text in the banner headline box

;==

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set the headline
font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; this next line creates the headline text -- this line can be copied

; anywhere in the program where the headline text needs to be changed

BoxDrawText(noteID, rectNoteText, "Progress Bar Demo", 1, 4)

;==

; This section creates the Begin and Exit buttons

;==

BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

;==

; Wait for a button to be selected (clicked)

;==

iBox = 0

BoxButtonWait()

While iBox == 0

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) Then iBox = x

 Next

440

Appendix A: WinBatch Demos

EndWhile

;==

; poll the buttons to decide which was pressed (clicked)

;==

if iBox

 BoxDataClear(mainID, "TOP")

 Switch iBox

 case bExit

 exit

 Break

 case bBegin

 gosub DO_PROGRESS

 Break

 EndSwitch

Endif

exit

;==

; PROGRESS BAR SUBROUTINE

;==

:DO_PROGRESS

;==

; Make the main window look nice
;==

BoxColor(mainID, RED, 1) ; select Red gradient

BoxDrawRect(mainID, "0, 0, 1000, 1000", 2) ; redraw the main window

BoxCaption(mainID, "Are we making any progress here?") ; change
caption

;==

; Create a window to contain the progress bar
;==

BoxNew(noteID, rectNote, 1) ; do note box

BoxColor(noteID, LTGRAY, 0) ; Light Gray, no gradient

BoxDrawRect(noteID, "", 2)

BoxTextFont(noteID, "Arial", noteHeight, 170, 0)

441

Introduction to Programming

BoxTextColor(noteID, RED)

rectNoteLine1A = " 0, 0, 1000, 0"

rectNoteline2A = "1000, 1000, 1000, 0"

rectNoteLine3A = " 0, 1000, 1000, 1000"

rectNoteLine4A = " 0, 0, 0, 1000"

notePenWidthA = 20

rectNoteLine1B = " 40, 150, 960, 150"

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

notePenWidthB = 10

BoxPen(noteID, WHITE, notePenWidthA)

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA)

BoxDrawLine(noteID, rectNoteLine2A)

BoxDrawLine(noteID, rectNoteLine3A)

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

BoxDataTag(noteID, "NOTE")

BoxDrawText(noteID, rectNoteText, "Initializing...", 1, 4)

TimeDelay(1) ; brief pause (1 second)

;===

; Now create a window for the progress bar proper
;==

rectProg = " 200, 550, 800, 750" ; size/position progress bar

 ; (relative to main window)

442

Appendix A: WinBatch Demos

BoxNew(progID, rectProg, 2)

BoxUpdates(progID, 0)

BoxCaption(progID, "Name Goes Here")

TimeDelay(1) ; brief pause (1 second)

BoxColor(progID, LTGRAY, 0)

BoxDrawRect(progID, "", 2)

; Draw updating progress bar here

; there are 3 virtual pixels per percent

; we have to draw 3 boxes and some text...

BoxDataTag(progID, "NULL")

BoxCaption(progID, "Please wait. Stepping through example...")

;==

; Settings for progress bar
;==

barLf = 104 ; settings for progress bar

barRt = 896

barTop = 454

barBtm = 796

textTop = barTop + 40 ; settings for percentage display

textBtm = barBtm - 40

outlnLf = barLf - 4 ; settings for progress bar outline

outlnRt = barRt + 4

outlnTop = barTop - 4

outlnBtm = barBtm + 4

; outline for progress bar

rectProgLine1 = " %outlnLf%, %outlnTop%, %outlnRt%, %outlnTop%"

rectProgLine2 = " %outlnRt%, %outlnTop%, %outlnRt%, %outlnBtm%"

rectProgLine3 = " %outlnRt%, %outlnBtm%, %outlnLf%, %outlnBtm%"

rectProgLine4 = " %outlnLf%, %outlnBtm%, %outlnLf%, %outlnTop%"

progPenWidth = 20

filesToCopy = 16 ; simulate file copy operation for progress bar

443

Introduction to Programming

filesCopied = 0

rectProgText = " 100, 50, 1000, 250" ; progress text message

;==

; Now simulate operation and paint the progress bar
;==

For filesCopied = 1 to filesToCopy

 BoxDataClear(progID, "NULL")

 BoxUpdates(progID, 0)

 ;===== setup the progress position =====

 xPos = 100 + ((800 * filesCopied) / filesToCopy)

 per = (100.0 * filesCopied) / filesToCopy

 per = Int(per)

 ;===== draw completed portion of bar ======

 BoxColor(progID, GREEN, 0)

 BoxDrawRect(progID, "%barLf%, %barTop%, %xPos%, %barBtm%", 2)

 ;===== draw incomplete portion of bar ======

 BoxColor(progID, GRAY, 0)

 BoxDrawRect(progID, "%xPos%, %barTop%, %barRt%, %barBtm%", 2)

 ;===== draw outline around progress bar ======

 BoxPen(progID, BLACK, progPenWidth)

 BoxDrawLine(progID, rectProgLine1)

 BoxDrawLine(progID, rectProgLine2)

 BoxDrawLine(progID, rectProgLine3)

 BoxDrawLine(progID, rectProgLine4)

 ;===== center the percentage on the green bar ======

 textLf = Max(104, ((xPos / 2) - 15))

 textRt = textLf + 30

 rectProgPercent = "%textLf%, %textTop%, %textRt%, %textBtm%"

 BoxDrawText(progID, rectProgPercent, "%per%%%", 0, 0)

 ;===== now report progress as text

444

Appendix A: WinBatch Demos

 BoxTextColor(progID, BLACK)

 BoxColor(progID, LTGRAY, 0)

 BoxDrawText(progID, rectProgText, "Steps completed:
%filesCopied%", 1, 0)

 BoxDrawText(noteID, rectNoteText, "Showing Progress", 1, 4)

 BoxUpdates(progID, 2)

 TimeDelay(Random(1.0)) ; Fake passage of time

Next

;==== now report completion =====

BoxTextColor(noteID, DKGREEN)

BoxDrawText(noteID, rectNoteText, "Example Complete", 1, 4)

Message("Company Name Goes Here", "Example Complete!")

;==== and clean up =====

BoxDestroy(progID)

BoxDestroy(noteID)

Return

Text Fonts.wbt
;**

;**

;** [Chapter 11]

;** Text Fonts.wbt

;** Uses Box functions for text and font display

;**

;**

;====== gray scale ========

; -R- -G- -B-

BLACK = " 0, 0, 0" ; Black

DKGRAY = " 64, 64, 64" ; Dark Gray

GRAY = "128, 128, 128" ; Gray

LTGRAY = "192, 192, 192" ; Light Gray

OFFWHITE = "236, 236, 236" ; Off-White

WHITE = "255, 255, 255" ; White

445

Introduction to Programming

;====== dark colors =======

; -R- -G- -B-

DKBLUE = " 0, 0, 128" ; Dark Blue

DKGREEN = " 0, 160, 0" ; Dark Green

DKRED = "128, 0, 0" ; Dark Red

DKCYAN = " 0, 128, 128" ; Dark Cyan

DKMAGENTA = "128, 0, 128" ; Dark Magenta

BROWN = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

BLUE = " 0, 0, 255" ; Blue

GREEN = " 0, 255, 0" ; Green

RED = "255, 0, 0" ; Red

CYAN = " 0, 255, 255" ; Cyan

MAGENTA = "255, 0, 255" ; Magenta

YELLOW = "255, 255, 0" ; Yellow

;======== Generic Initialization ===========;

; allows windows to exit without warning (1) quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires successive IDs

drawID = 2

noteID = 3

progID = 8

bExit = 1

bBegin = 2

bColorUp = 2

bColorDn = 3

nColorStep = 3

446

Appendix A: WinBatch Demos

dRed = nColorStep

dBlue = nColorStep

dGreen = nColorStep

; Note the use of while @TRUE. This use of while maintains

; the boxes until a user clicks on a button and exits the

; while construction

While @TRUE

 ;==

 ; This section creates the main window

 ;==

 BoxColor(mainID, GREEN, 4) ; third param sets shaded background

 BoxCaption(mainID, "Text Fonts.wbt Demo") ; window caption

 BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size logical units

 BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; init font info

 BoxTextColor(mainID, "255, 255, 0") ; initial font color

 ;==

 ; And this puts a message in thw window

 ;==

 BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start",
0, 0)

 ;==

 ; This section creates the fancy banner headline in a box

 ;==

 rectNote = "100, 100, 900, 340" ; set the size of the banner box

 BoxNew(noteID, rectNote, 1) ; create the box

 BoxColor(noteID, LTGRAY, 0) ; background Light Gray, no gradient

 BoxDrawRect(noteID, "", 2) ; fill banner box with background color

 ;==

 ; Next create a 3-D outline around the box

 ;==

 ; note that all units are logical units relative to

 ; the notebox which (by default) has a logical size of

 ; 1000 x 1000 units

447

Introduction to Programming

 notePenWidthA = 20

 rectNoteLine1A = " 0, 0, 1000, 0"

 rectNoteline2A = "1000, 1000, 1000, 0"

 rectNoteLine3A = " 0, 1000, 1000, 1000"

 rectNoteLine4A = " 0, 0, 0, 1000"

 ; draw the outer outline

 BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

 BoxDrawLine(noteID, rectNoteLine1A)

 BoxDrawLine(noteID, rectNoteLine4A)

 BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

 BoxDrawLine(noteID, rectNoteLine2A)

 BoxDrawLine(noteID, rectNoteLine3A)

 ; draw the inner outline

 notePenWidthB = 10

 rectNoteLine1B = " 40, 150, 960, 150"

 rectNoteline2B = " 960, 840, 960, 150"

 rectNoteLine3B = " 40, 840, 960, 840"

 rectNoteLine4B = " 40, 150, 40, 840"

 BoxPen(noteID, WHITE, notePenWidthB)

 BoxDrawLine(noteID, rectNoteLine2B)

 BoxDrawLine(noteID, rectNoteLine3B)

 BoxPen(noteID, GRAY, notePenWidthB)

 BoxDrawLine(noteID, rectNoteLine1B)

 BoxDrawLine(noteID, rectNoteLine4B)

 ;==

 ; Now put text in the banner headline box

 ;==

 noteHeight = 400

 BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; headline font

 rectNoteText = " 70, 200, 950, 800"

 BoxTextColor(noteID, RED)

 ; next line creates the headline text. This can be copied anywhere

 ; in the program where the headline text needs to be changed

448

Appendix A: WinBatch Demos

 BoxDrawText(noteID, rectNoteText, "Text & Font Demo", 1, 4)

 ;==

 ; This section creates the Begin and Exit buttons

 ;==

 BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

 BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

 ;==

 ; Wait for a button to be selected (clicked)

 ;==

 iBox = 0

 BoxButtonWait()

 While iBox == 0

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) then iBox = x

 Next

 EndWhile

 ;==

 ; poll the buttons to decide which was pressed (clicked)

 ;==

 If iBox

 BoxDataClear(mainID, "TOP")

 Switch iBox

 case bExit

 exit

 break

 case bBegin

 gosub DO_TEXT

 break

 EndSwitch

 EndIf

EndWhile

exit

;==

449

Introduction to Programming

; TEXT / FONT SUBROUTINE

;==

:DO_TEXT

BoxCaption(mainID, "Fontopia")

BoxNew(drawID, "0, 0, 1000, 500", 0)

BoxColor(drawID, LTGRAY, 2)

BoxColor(mainID, LTGRAY, 0)

BoxButtonDraw(mainID, bExit, "E&xit", "750, 860, 900, 930")

BoxDrawRect(drawID, "0, 0, 1000, 1000", 2)

BoxDrawRect(mainID, "0, 500, 1000, 1000", 2)

listWords = "T'was brillig and the slithey toves did gyre gimble on
wabe all mimsey were borogoives momraths outgrabe"

wc = ItemCount(listWords, " ")

BoxTextColor(mainID, BLACK)

BoxTextFont(mainID, "", 20, 0, 0)

BoxTextColor(mainID, RED)

BoxDrawText(mainID, "25, 510, 1000, 545", "Results shown will vary
with installed fonts...", 0, 0)

BoxTextColor(mainID, BLACK)

fontStyleList = "Normal":@TAB:"Italic":@TAB:"Bold":@TAB:"Bold Italic"

fontTypeList = "0,100,70,170"

For i = 1 to 4

 fontStyle = ItemExtract(i, fontStyleList, @TAB)

 fontType = ItemExtract(i, fontTypeList, ",")

 xLf = 25 + (i - 1) * 250

 xRt = xLf + 225

 BoxTextFont(mainID, "", 30, fontType, 0)

 BoxDrawText(mainID, "%xLf%, 550, %xRt%, 600", fontStyle, 0, 0)

 BoxTextFont(mainID, "Times New Roman", 30, fontType, 16)

 BoxDrawText(mainID, "%xLf%, 600, %xRt%, 650", "Roman", 0, 0)

 BoxTextFont(mainID, "Arial", 30, fontType, 32)

 BoxDrawText(mainID, "%xLf%, 650, %xRt%, 700", "Swiss", 0, 0)

 BoxTextFont(mainID, "Courier New", 30, fontType, 48)

 BoxDrawText(mainID, "%xLf%, 700, %xRt%, 750", "Modern", 0, 0)

 BoxTextFont(mainID, "Black Adder", 30, fontType, 64)

450

Appendix A: WinBatch Demos

 BoxDrawText(mainID, "%xLf%, 750, %xRt%, 800", "Script", 0, 0)

 BoxTextFont(mainID, "Old English", 30, fontType, 80)

 BoxDrawText(mainID, "%xLf%, 800, %xRt%, 850", "Decorative", 0, 0)

Next

BoxDataTag(drawID, "NULL")

brk = 0

cnt = 0

wash = 0

BoxDestroy(noteID)

While @TRUE

 For i = 1 to wc

 cnt = cnt + 1

 GoSub RANDOM_COLOR

 BoxTextColor(drawID, "%rVal%, %gVal%, %bVal%")

 x = Random(800)

 y = Random(800)

 s = x + Random(200)

 t = y + Random(200)

 fontStyle = 10 + Random(80) + (100 * Int(Random(1)))

 fontSize = Max(10, Min(t - y, Random(200)))

 fontPitch = Random (2)

 Switch Random (5)

 case 0

 fontFamily = 0 ; default

 break

 case 1

 fontFamily = 16 ; Roman (Times Roman, etc)

 break

 case 2

 fontFamily = 32 ; Swiss (Helvetica, Arial, Swiss, etc)

 break

 case 3

 fontFamily = 48 ; Modern (Pica, Elite, Courier, etc)

 break

 case 4

 fontFamily = 64 ; Script

451

Introduction to Programming

 break

 case 5

 fontFamily = 80 ; Decorative (Old English, etc)

 break

 EndSwitch

 BoxTextFont(drawID, "", fontSize, fontStyle, fontPitch &
fontFamily)

 BoxDrawText(drawID, "%x%, %y%, %s%, %t%", ItemExtract(i,
listWords, " "), 0, 0)

 If BoxButtonStat(mainID, bExit)

 brk = 1

 BoxButtonKill(mainID, bExit)

 break

 Endif

 If cnt == 200

 cnt = 0

 wash = wash + 1

 if wash == 8 then wash = 0

 BoxColor(drawID, "%rVal%, %gVal%, %bVal%", wash)

 BoxDrawRect(drawID, "0, 0, 1000, 1000", 2)

 Endif

 Next

 BoxDataClear(drawID, "NULL")

 If brk then break

Endwhile

BoxDestroy(drawID)

return

;==

; SPARE SUBROUTINE

;==

:SPARE

Message("Empty", "This can be used for your own purposes.")

return

;==

; ADDITIONAL SUBROUTINES

452

Appendix A: WinBatch Demos

;==

:SET_COLOR_CAPTION

BoxCaption(mainID, "That Old Line [Color Step = %nColorStep%]")

return

:STEP_COLOR

If(rVal >= 250) then dRed = -nColorStep

If(rVal <= 5) then dRed = nColorStep

rVal = rVal + dRed

If(gVal >= 250) then dGreen = -nColorStep

If(gVal <= 5) then dGreen = nColorStep

gVal = gVal + dGreen

If(bVal >= 250) then dBlue = -nColorStep

If(bVal <= 5) then dBlue = nColorStep

bVal = bVal + dBlue

return

:RANDOM_HUE

Switch Random(3)

 case 1

 If(dRed == nColorStep)

 dRed = -nColorStep

 Else

 dRed = nColorStep

 Endif

 break

 case 2

 If(dGreen == nColorStep)

 dGreen = -nColorStep

 Else

 dGreen = nColorStep

 Endif

 break

 case 3

 If(dBlue == nColorStep)

453

Introduction to Programming

 dBlue = -nColorStep

 Else

 dBlue = nColorStep

 Endif

 break

EndSwitch

return

:RANDOM_COLOR

rVal = Int(Random(255))

gVal = Int(Random(255))

bVal = Int(Random(255))

:CHECK_COLOR

q = Min(rVal, gVal, bVal)

If q == rVal then rVal = 0

If q == gVal then gVal = 0

If q == bVal then bVal = 0

q = Max(rVal, gVal, bVal)

If q == rVal then rVal = 255

If q == gVal then gVal = 255

If q == bVal then bVal = 255

return

Colors.wbt
;**

;**

;** [Chapter 11]

;** Colors.wbt

;** Uses Box functions to create a color display

;** showing three palettes of six colors each

;**

;**

;==

; definitions for assorted colors

;==

;====== gray scale ========

454

Appendix A: WinBatch Demos

; -R- -G- -B-

COLOR1 = " 0, 0, 0" ; Black

COLOR2 = " 64, 64, 64" ; Dark Gray

COLOR3 = "128, 128, 128" ; Gray

COLOR4 = "192, 192, 192" ; Light Gray

COLOR5 = "236, 236, 236" ; Off-White

COLOR6 = "255, 255, 255" ; White

;====== dark colors =======

; -R- -G- -B-

COLOR7 = " 0, 0, 128" ; Dark Blue

COLOR8 = " 0, 160, 0" ; Dark Green

COLOR9 = "128, 0, 0" ; Dark Red

COLOR10 = " 0, 128, 128" ; Dark Cyan

COLOR11 = "128, 0, 128" ; Dark Magenta

COLOR12 = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

COLOR13 = " 0, 0, 255" ; Blue

COLOR14 = " 0, 255, 0" ; Green

COLOR15 = "255, 0, 0" ; Red

COLOR16 = " 0, 255, 255" ; Cyan

COLOR17 = "255, 0, 255" ; Magenta

COLOR18 = "255, 255, 0" ; Yellow

listColors = "Black,Dark Gray,Gray,Light Gray,Off-White,White,Dark
Blue,Dark Green,Dark Red,Dark Cyan,Dark
Magenta,Brown,Blue,Green,Red,Cyan,Magenta,Yellow"

;==

; Window identifiers

;==

mainID = 1 ; requires IDs less than 9

;==

; Color rectangles

;==

455

Introduction to Programming

rectColor1 = " 50, 100, 330, 400"

rectColor2 = "360, 100, 640, 400"

rectColor3 = "670, 100, 950, 400"

rectColor4 = " 50, 450, 330, 750"

rectColor5 = "360, 450, 640, 750"

rectColor6 = "670, 450, 950, 750"

;==

; Button identifiers

;==

bExit = 1

bGrays = 2

bDark = 3

bLight = 4

;==

; Generic Initialization

; allows windows to exit without warning (1)

; + quiet termination (4)

;==

IntControl(12, 5, 0, 0, 0)

;==

; Creates the top-level Window

;==

BoxesUp("100, 100, 900, 900", @NORMAL)

;======== Drawing the Main Box ==============================

; Note the use of while @TRUE. This use of while maintains

; the boxes until a user clicks on a button and exits

; the while construction

;==

nOfs = 0

While @TRUE

 ;==

 ; This section clears all previous drawing commands

456

Appendix A: WinBatch Demos

 ; if any, form the "Box Stack"

 ; See the section in the Winbatch helpfile on

 ; Drawing Stack Management.

 ;==

 BoxDataClear(mainID, "TOP")

 ;==

 ; This section creates the main window

 ;==

 BoxColor(mainID, COLOR14, 4) ; third param sets shaded background

 BoxCaption(mainID, "Colors.wbt Demo") ; window caption

 BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size logical units

 ;==

 ; This section creates the Color and Exit buttons

 ;==

 BoxButtonDraw(mainID, bGrays, "Gray Scale", "100, 820, 250, 890")

 BoxButtonDraw(mainID, bDark, "Dark Colors", "275, 820, 425, 890")

 BoxButtonDraw(mainID, bLight, "Light Colors","450, 820, 600, 890")

 BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

 If nOfs == 12 then textColor = 1

 If nOfs == 6 then textColor = 6

 BoxTextFont(mainID, "Times", 40, 40, 0 | 0) ; initial font info

 For i = 1 to 6

 nColor = i + nOfs ; box color

 If nOfs == 0 then textColor = 7 - i ; text color for gray scale

 label = ItemExtract(nColor, listColors, ",")

 label = StrCat(@CRLF, " ", label, @CRLF, @TAB, COLOR%nColor%)

 BoxColor(mainID, COLOR%nColor%, 0) ; background color

 BoxPen(mainID, COLOR%textColor%, 5) ; outline color

 BoxDrawRect(mainID, rectColor%i%, 1) ; fill banner box with
background color

 BoxTextColor(mainID, COLOR%textColor%)

 BoxDrawText(mainID, rectColor%i%, label, 0, 0)

 Next

 ;==

457

Introduction to Programming

 ; Wait for a button to be selected (clicked)

 ;==

 iBox = 0

 BoxButtonWait()

 ;==

 ; and poll the buttons to decide which was pressed (clicked)

 ;==

 While iBox == 0

 For x = 1 to 4 ; sequential buttons required

 if BoxButtonStat(mainID, x) then iBox = x

 Next

 EndWhile

 ;==

 ; now do something with the event

 ;==

 If iBox

 Switch iBox

 case bExit

 exit

 break

 case bGrays

 nOfs = 0

 break

 case bDark

 nOfs = 6

 break

 case bLight

 nOfs = 12

 break

 EndSwitch

 Endif

EndWhile

exit

458

Appendix A: WinBatch Demos

Buttons.wbt
;**

;**

;** [Chapter 11]

;** Buttons.wbt

;** Uses Box functions to demonstrate buttons

;**

;**

;==

; Window identifiers

;==

mainID = 1 ; requires IDs less than 9

;==

; Button identifiers

;==

b1 = 1

b2 = 2

b3 = 3

b4 = 4

b5 = 5

b6 = 6

b7 = 7

b8 = 8

b9 = 9

b10 = 10

b11 = 11

b12 = 12

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

BoxColor(mainID, "0, 0, 0", 7)

BoxDrawRect(mainID, "0, 0, 1000, 1000", 1)

459

Introduction to Programming

BoxButtonDraw(mainID, b1, "1", "100, 100, 300, 250")

BoxButtonDraw(mainID, b2, "2", "400, 100, 600, 250")

BoxButtonDraw(mainID, b3, "3", "700, 100, 900, 250")

BoxButtonDraw(mainID, b4, "4", "100, 300, 300, 450")

BoxButtonDraw(mainID, b5, "5", "400, 300, 600, 450")

BoxButtonDraw(mainID, b6, "6", "700, 300, 900, 450")

BoxButtonDraw(mainID, b7, "7", "100, 500, 300, 650")

BoxButtonDraw(mainID, b8, "8", "400, 500, 600, 650")

BoxButtonDraw(mainID, b9, "9", "700, 500, 900, 650")

BoxButtonDraw(mainID, b10, "10", "100, 700, 300, 850")

BoxButtonDraw(mainID, b11, "11", "400, 700, 600, 850")

BoxButtonDraw(mainID, b12, "12", "700, 700, 900, 850")

; Randomly select an Exit button

bExit = Random(11) + 1

While @TRUE

 ;==

 ; Wait for a button to be selected (clicked)

 ;==

 BoxButtonWait()

 If BoxButtonStat(mainID, b%bExit%) then exit

 For i = 1 to 12

 If BoxButtonStat(mainID, b%i%) == @TRUE

 Switch Random(8)

 case 1

 Display(1, "Forgetit", "Not even close")

 break

 case 2

 Display(1, "Try again", "It's here somewhere")

 break

 case 3

 Display(1, "Missed", "Your aim's lousy")

 break

 case 4

 Display(1, "Nayya", "No way, Fred")

 break

460

Appendix A: WinBatch Demos

 case 5

 Display(1, "Huh?", "You mean me?")

 break

 case 6

 Display(1, "Whoops", "Come on, you can do better")

 break

 case 7

 Display(1, "Ouch", "Hey, hands off")

 break

 case 8

 Display(1, "Wrong", "Guess again")

 break

 EndSwitch

 EndIf

 Next

EndWhile

exit

Lines.wbt
;**

;**

;** [Chapter 11]

;** Lines.wbt

;** Uses Box functions to create rectangles and circles

;**

;**

;====== gray scale ========

; -R- -G- -B-

BLACK = " 0, 0, 0" ; Black

DKGRAY = " 64, 64, 64" ; Dark Gray

GRAY = "128, 128, 128" ; Gray

LTGRAY = "192, 192, 192" ; Light Gray

OFFWHITE = "236, 236, 236" ; Off-White

WHITE = "255, 255, 255" ; White

;====== dark colors =======

461

Introduction to Programming

; -R- -G- -B-

DKBLUE = " 0, 0, 128" ; Dark Blue

DKGREEN = " 0, 160, 0" ; Dark Green

DKRED = "128, 0, 0" ; Dark Red

DKCYAN = " 0, 128, 128" ; Dark Cyan

DKMAGENTA = "128, 0, 128" ; Dark Magenta

BROWN = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

BLUE = " 0, 0, 255" ; Blue

GREEN = " 0, 255, 0" ; Green

RED = "255, 0, 0" ; Red

CYAN = " 0, 255, 255" ; Cyan

MAGENTA = "255, 0, 255" ; Magenta

YELLOW = "255, 255, 0" ; Yellow

;======== Generic Initialization ===========;

; allows windows to exit without warning (1)

; + quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires successive IDs

drawID = 2

noteID = 3

progID = 8

bExit = 1

bBegin = 2

bColorUp = 4

bColorDn = 5

nColorStep = 3

462

Appendix A: WinBatch Demos

dRed = nColorStep

dBlue = nColorStep

dGreen = nColorStep

;==

; This section creates the main window

;==

BoxColor(mainID, GREEN, 4) ; third param sets
shaded background

BoxCaption(mainID, "Lines.wbt Demo") ; window caption

BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size is in logical
units

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font
information

BoxTextColor(mainID, "255, 255, 0") ; initial font color

;==

; And this puts a message in the window

;==

BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start", 0,
0)

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no
gradient

BoxDrawRect(noteID, "", 2) ; fill the entire banner box with
the background color

;==

; Next create a 3-D outline around the box

;==

; note that all units are logical units relative to the notebox

; which (by default) has a logical size of 1000 x 1000 units

notePenWidthA = 20

rectNoteLine1A = " 0, 0, 1000, 0"

463

Introduction to Programming

rectNoteline2A = "1000, 1000, 1000, 0"

rectNoteLine3A = " 0, 1000, 1000, 1000"

rectNoteLine4A = " 0, 0, 0, 1000"

; draw the outer outline

BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

BoxDrawLine(noteID, rectNoteLine2A)

BoxDrawLine(noteID, rectNoteLine3A)

; draw the inner outline

notePenWidthB = 10

rectNoteLine1B = " 40, 150, 960, 150"

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

;==

; Now put text in the banner headline box

;==

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set headline font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; this next line creates the headline text -- this line can be copied

; anywhere in the program where the headline text needs to be changed

BoxDrawText(noteID, rectNoteText, "Line Drawing Demo", 1, 4)

464

Appendix A: WinBatch Demos

;==

; This section creates the Begin and Exit buttons

;==

BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

;==

; Wait for a button to be selected (clicked)

;==

iBox = 0

BoxButtonWait()

While iBox == 0

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) then iBox = x

 Next

EndWhile

;==

; poll the buttons to decide which was pressed (clicked)

;==

If iBox

 BoxDataClear(mainID, "TOP")

 Switch iBox

 case bExit

 exit

 break

 case bBegin

 GoSub DO_LINES

 break

 EndSwitch

EndIf

exit

;==

; DRAW LINES SUBROUTINE

;==

:DO_LINES

465

Introduction to Programming

 boxLf = 0

 boxRt = 1000

 boxTop = 0

 boxBtm = 1000

 GoSub RANDOM_COLOR ; get an initial color value

 rectBox = "%boxLf%, %boxTop%, %boxRt%, %boxBtm%"

 GoSub SET_COLOR_CAPTION

 BoxNew(drawID, rectBox, 0)

 BoxColor(drawID, BLACK, 0)

 BoxDrawRect(drawID, rectBox, 2)

 BoxButtonDraw(drawID, bColorUp, "Inc Color", " 70, 860, 220, 930")

 BoxButtonDraw(drawID, bColorDn, "Dec Color", "250, 860, 400, 930")

 BoxButtonDraw(drawID, bExit, "E&xit", "750, 860, 900, 930")

 BoxDataTag(drawID, "NULL")

 point_1 = 200

 point_2 = 200

 point_3 = 400

 point_4 = 400

 vertex_1 = 20 - Random(40)

 vertex_2 = 20 - Random(40)

 vertex_3 = 20 - Random(40)

 vertex_4 = 20 - Random(40)

 bForward = @TRUE

 While @TRUE

 If BoxButtonStat(drawID, bExit) == 1 then

 BoxButtonKill(drawID, bColorUp)

 BoxButtonKill(drawID, bColorDn)

 BoxButtonKill(drawID, bExit)

 break

 EndIf

 If BoxButtonStat(drawID, bColorUp) == 1 then

466

Appendix A: WinBatch Demos

 If nColorStep < 10 then nColorStep = nColorStep + 1

 GoSub SET_COLOR_CAPTION

 EndIf

 If BoxButtonStat(drawID, bColorDn) == 1 then

 If nColorStep > 1 then nColorStep = nColorStep - 1

 GoSub SET_COLOR_CAPTION

 EndIf

 BoxDataClear(drawID, "NULL")

 If bForward == @TRUE

 GoSub RANDOM_HUE

 bForward = @FALSE ; change step direction

 EndIf

 BoxPen(drawID, "%rVal%, %gVal%, %bVal%", 1)

 BoxDrawLine(drawID, "%point_1%,%point_2%,%point_3%,%point_4%")

 GoSub STEP_COLOR

 bForward = @FALSE

 For q = 1 to 4

 point_%q% = point_%q% + vertex_%q%

 If point_%q% <= boxLf

 point_%q% = boxLf

 vertex_%q% = Int(Random(10)) + 1

 bForward = @TRUE ; change step direction

 EndIf

 If point_%q% >= boxRt

 point_%q% = boxRt

 vertex_%q% = -Int(Random(10)) - 1

 bForward = @TRUE ; change step direction

 EndIf

 Next

 EndWhile

 BoxDestroy(drawID)

return

467

Introduction to Programming

:SET_COLOR_CAPTION

 BoxCaption(mainID, "That Old Line [Color Step = %nColorStep%]")

return

:STEP_COLOR

 If(rVal >= 245) then dRed = -nColorStep

 If(rVal <= 10) then dRed = nColorStep

 rVal = rVal + dRed

 If(gVal >= 245) then dGreen = -nColorStep

 If(gVal <= 10) then dGreen = nColorStep

 gVal = gVal + dGreen

 If(bVal >= 245) then dBlue = -nColorStep

 If(bVal <= 10) then dBlue = nColorStep

 bVal = bVal + dBlue

return

:RANDOM_HUE

 switch Random(3)

 case 1

 If(dRed == nColorStep)

 dRed = -nColorStep

 else

 dRed = nColorStep

 EndIf

 break

 case 2

 If(dGreen == nColorStep)

 dGreen = -nColorStep

 else

 dGreen = nColorStep

 EndIf

 break

 case 3

 If(dBlue == nColorStep)

468

Appendix A: WinBatch Demos

 dBlue = -nColorStep

 else

 dBlue = nColorStep

 EndIf

 break

 endSwitch

return

:RANDOM_COLOR

 rVal = Int(Random(255))

 gVal = Int(Random(255))

 bVal = Int(Random(255))

:CHECK_COLOR

 q = Min(rVal, gVal, bVal)

 If q == rVal then rVal = 0

 If q == gVal then gVal = 0

 If q == bVal then bVal = 0

 q = Max(rVal, gVal, bVal)

 If q == rVal then rVal = 255

 If q == gVal then gVal = 255

 If q == bVal then bVal = 255

return

Shapes.wbt
;**

;**

;** [Chapter 11]

;** Shapes.wbt

;** Uses Box functions to create rectangles and circles

;**

;**

;====== gray scale ========

; -R- -G- -B-

BLACK = " 0, 0, 0" ; Black

DKGRAY = " 64, 64, 64" ; Dark Gray

GRAY = "128, 128, 128" ; Gray

469

Introduction to Programming

LTGRAY = "192, 192, 192" ; Light Gray

OFFWHITE = "236, 236, 236" ; Off-White

WHITE = "255, 255, 255" ; White

;====== dark colors =======

; -R- -G- -B-

DKBLUE = " 0, 0, 128" ; Dark Blue

DKGREEN = " 0, 160, 0" ; Dark Green

DKRED = "128, 0, 0" ; Dark Red

DKCYAN = " 0, 128, 128" ; Dark Cyan

DKMAGENTA = "128, 0, 128" ; Dark Magenta

BROWN = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

BLUE = " 0, 0, 255" ; Blue

GREEN = " 0, 255, 0" ; Green

RED = "255, 0, 0" ; Red

CYAN = " 0, 255, 255" ; Cyan

MAGENTA = "255, 0, 255" ; Magenta

YELLOW = "255, 255, 0" ; Yellow

;==================== Generic Initialization ======================;

; allows windows to exit without warning (1) + quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires successive IDs

drawID = 2

noteID = 3

progID = 8

bExit = 1

bBegin = 2

470

Appendix A: WinBatch Demos

bChange = 2

;==

; This section creates the main window

;==

BoxColor(mainID, GREEN, 4); third param sets shaded background

BoxCaption(mainID, "Shapes.wbt Demo") ; window caption

BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size in logical units

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font info

BoxTextColor(mainID, "255, 255, 0") ; initial font color

;==

; And this puts a message in thw window

;==

BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start", 0,
0)

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill banner box with background color

;==

; Next create a 3-D outline around the box

;==

; note that all units are logical units relative to the notebox

; which (by default) has a logical size of 1000 x 1000 units

notePenWidthA = 20

rectNoteLine1A = " 0, 0, 1000, 0"

rectNoteline2A = "1000, 1000, 1000, 0"

rectNoteLine3A = " 0, 1000, 1000, 1000"

rectNoteLine4A = " 0, 0, 0, 1000"

; draw the outer outline

BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

471

Introduction to Programming

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

BoxDrawLine(noteID, rectNoteLine2A)

BoxDrawLine(noteID, rectNoteLine3A)

; draw the inner outline

notePenWidthB = 10

rectNoteLine1B = " 40, 150, 960, 150"

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

;==

; Now put text in the banner headline box

;==

noteHeight = 300

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set headline font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; this next line creates the headline text -- this line can be copied

; anywhere in the program where the headline text needs to be changed

BoxDrawText(noteID, rectNoteText, "Shape Drawing Demo", 1, 1+4)

;==

; This section creates the Begin and Exit buttons

;==

BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

472

Appendix A: WinBatch Demos

;==

; Wait for a button to be selected (clicked)

;==

iBox = 0

BoxButtonWait()

While iBox == 0

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) then iBox = x

 Next

EndWhile

;==

; poll the buttons to decide which was pressed (clicked)

;==

If iBox

 BoxDataClear(mainID, "TOP")

 Switch iBox

 case bExit

 exit

 break

 case bBegin

 gosub DO_SHAPES

 break

 EndSwitch

EndIf

exit

;==

; DRAW SHAPES SUBROUTINE

;==

:DO_SHAPES

 bRectangles = @TRUE

 BoxCaption(mainID, "Random Shapes")

 BoxNew(drawID, "0, 0, 1000, 1000", 0)

 BoxButtonDraw(drawID, bChange, "Circles", " 70, 860, 220, 930")

 BoxButtonDraw(drawID, bExit, "E&xit", "750, 860, 900, 930")

473

Introduction to Programming

 ;==

 ; Set the point to clear the drawing stack

 ; for a BoxDataClear function later

 ;==

 BoxDataTag(drawID, "NULL")

 While @TRUE

 ;==

 ; see if the Exit button was clicked

 ;==

 If BoxButtonStat(drawID, bExit) == 1 then

 BoxButtonKill(drawID, bChange)

 BoxButtonKill(drawID, bExit)

 break

 EndIf

 ;==

 ; update the button label

 ;==

 If BoxButtonStat(drawID, bChange) == 1 then

 If bRectangles then

 bRectangles = @FALSE

 BoxButtonDraw(drawID,bChange,"Rectangles","70,860,220,930")

 Else

 bRectangles = @TRUE

 BoxButtonDraw(drawID, bChange, "Circles","70,860,220,930")

 EndIf

 EndIf

 ;==

 ; random coordinates for shape

 ;==

 boxLf = Random(1000)

 boxRt = Random(1000)

 boxTop = Random(1000)

474

Appendix A: WinBatch Demos

 boxBtm = Random(1000)

 ;==

 ; create a random color

 ;==

 rVal = Random(255)

 gVal = Random(255)

 bVal = Random(255)

 BoxColor(drawID, "%rVal%, %gVal%, %bVal%", 0)

 ;==

 ; invert the color for the outline

 ;==

 rPen = 255 - rVal

 gPen = 255 - gVal

 bPen = 255 - bVal

 BoxPen(drawID, "%rPen%, %gPen%, %bPen%", 5)

 ;==

 ; draw either a rectangle or a circle

 ;==

 If bRectangles then

 BoxDrawRect(drawID, "%boxLf%,%boxTop%,%boxRt%,%boxBtm%", 1)

 Else

 BoxDrawCircle(drawID, "%boxLf%,%boxTop%,%boxRt%,%boxBtm%",1)

 EndIf

 ;==

 ; Clear part of the drawing stack at point set by BoxDataTag.

 ;==

 BoxDataClear(drawID, "NULL")

 EndWhile

 BoxDestroy(drawID)

return

475

Introduction to Programming

Phone.lst
Albert Einstein 34 McFadden Apt 7 Princeton MA 01234 (222) 357-
9246

Han Solo 87 Cloud St #92 Hollywood CA 89034 (111) 345-6789

Joe Friday 1 Police Plaza New York NY 01010 (333) 135-7924

John Jacob Jingleheimer Schmidt 999 9th St Stumptown CA
 95446 (707) 999-8765

Rob Roy 123 4th Ave Gurrock MN 78945 (555) 567-8901

S. F. Katt 1 Park Ave New York NY 10016 (781) 393-3700

Sol Rosencranz #2 Old Stone Bridge Daubmore MS 68758 (999)
555-2345

Dilbert Cubicle 23 Silicon Valley CA 95444 (890) 555-5893

PhoneListBox.wbt
;**

;**

;** [Chapter 11]

;** PhoneListBox.wbt

;** Uses Box functions for formatted text dieplay

;**

;**

; Set working directory to the same directory the script is in

; in case somehow it got started un in some strange manner

DirChange(DirScript())

;====== gray scale ========

; -R- -G- -B-

BLACK = " 0, 0, 0" ; Black

DKGRAY = " 64, 64, 64" ; Dark Gray

GRAY = "128, 128, 128" ; Gray

LTGRAY = "192, 192, 192" ; Light Gray

OFFWHITE = "236, 236, 236" ; Off-White

WHITE = "255, 255, 255" ; White

;====== dark colors =======

; -R- -G- -B-

DKBLUE = " 0, 0, 128" ; Dark Blue

DKGREEN = " 0, 160, 0" ; Dark Green

476

Appendix A: WinBatch Demos

DKRED = "128, 0, 0" ; Dark Red

DKCYAN = " 0, 128, 128" ; Dark Cyan

DKMAGENTA = "128, 0, 128" ; Dark Magenta

BROWN = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

BLUE = " 0, 0, 255" ; Blue

GREEN = " 0, 255, 0" ; Green

RED = "255, 0, 0" ; Red

CYAN = " 0, 255, 255" ; Cyan

MAGENTA = "255, 0, 255" ; Magenta

YELLOW = "255, 255, 0" ; Yellow

;======== Generic Initialization ===========;

; allows windows to exit without warning (1)

; + quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires successive IDs

drawID = 2

noteID = 3

bExit = 1

bBegin = 2

nColor = 3 ; initial drawing color

nSelect = 0 ; no selection to start

sDelimiter = '|'

;==

; This section creates the main window

477

Introduction to Programming

;==

BoxColor(mainID, GREEN, 4) ; third param sets shaded background

BoxCaption(mainID, "PhoneListBox.wbt") ; window caption

BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size logical units

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font info

BoxTextColor(mainID, "255, 255, 0") ; initial font color

;==

; And this puts a message in thw window

;==

BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start", 0,
0)

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background Lt Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill banner box with background color

;==

; Next create a 3-D outline around the box

;==

; note that all units are logical units relative to the notebox

; which (by default) has a logical size of 1000 x 1000 units

notePenWidthA = 20

rectNoteLine1A = " 0, 0, 1000, 0"

rectNoteline2A = "1000, 1000, 1000, 0"

rectNoteLine3A = " 0, 1000, 1000, 1000"

rectNoteLine4A = " 0, 0, 0, 1000"

; draw the outer outline

BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

BoxDrawLine(noteID, rectNoteLine2A)

478

Appendix A: WinBatch Demos

BoxDrawLine(noteID, rectNoteLine3A)

; draw the inner outline

notePenWidthB = 10

rectNoteLine1B = " 40, 150, 960, 150"

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

;==

; Now put text in the banner headline box

;==

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0) ; set the headline
font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; this next line creates the headline text -- this line can be copied

; anywhere in the program where the headline text needs to be changed

BoxDrawText(noteID, rectNoteText, "Phone List Box", 1, 4)

;==

; This section creates the Begin and Exit buttons

;==

BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

;==

; Wait for a button to be selected (clicked)

;==

iBox = 0

479

Introduction to Programming

BoxButtonWait()

While iBox == 0

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) then iBox = x

 Next

EndWhile

;==

; poll the buttons to decide which was pressed (clicked)

;==

If iBox

 BoxDataClear(mainID, "TOP")

 Switch iBox

 case bExit

 exit

 break

 case bBegin

 BoxDestroy(noteID)

 GoSub DO_LIST

 break

 EndSwitch

EndIf

exit

:DO_LIST

BoxCaption(mainID, "Left-Click to select, right-click to exit") ;
window caption

sDataFile = "Phone.lst"

hFile = FileOpen(sDataFile, "READ")

listPhone = ""

While @TRUE

 sLineIn = FileRead(hFile)

 If(sLineIn == "*EOF*") then break

 listPhone = StrCat(listPhone, sLineIn, sDelimiter)

EndWhile

FileClose(hFile) ; close the input file

480

Appendix A: WinBatch Demos

listPhone = ItemSort(listPhone, sDelimiter)

GoSub DISPLAY_LIST

exit

:DISPLAY_LIST

nCount = 0

nCheck = 0

nRow = 0

nFontHeight = 30

nRowHeight = Int(nFontHeight * 1.2)

rectBox = "0, 0, 1000, 1000"

BoxNew(drawID, rectBox, 0)

BoxColor(drawID, BLACK, 0)

BoxDrawRect(drawID, rectBox, 2)

BoxTextFont(drawID, "Arial", nFontHeight, 40, 0 | 0)

BoxDataTag(drawID, "LIST")

While @TRUE ; Redo list

 BoxDataClear(drawID, "LIST")

 For i = 1 to ItemCount(listPhone, sDelimiter)

 If i == nSelect

 BoxTextColor(drawID, GREEN)

 Else

 BoxTextColor(drawID, WHITE)

 EndIf

 sTemp = ItemExtract(i, listPhone, sDelimiter)

 sName = ItemExtract(1, sTemp, @TAB)

 sPhone = ItemExtract(7, sTemp, @TAB)

 yTop = Int(nRowHeight * (i - 1))

 yBottom = yTop + nFontHeight

 BoxDrawText(drawID, "10, %yTop%, 490, %yBottom%", sName, 0, 0)

 BoxDrawText(drawID, "500, %yTop%, 990, %yBottom%", sPhone,0, 0)

 Next

 nButton = 0

481

Introduction to Programming

 doRedraw=@FALSE

 While nButton == 0 ; loop while waiting for mouse event

 nCheck = nCheck + 1

 nButton = MouseInfo(4)

 If nButton & 1 then return ; use the right mouse button to exit

 If nButton & 4

 nCount = nCount + 1

 sPosition = MouseInfo(6) ; get position

 nRow = ItemExtract(2, sPosition, " ")

 nSelect = Int(nRow / nRowHeight) + 1

 If nCount > 2 ; is this the third click?

 sTemp = ItemExtract(nSelect, listPhone, sDelimiter)

 sName = ItemExtract(1, sTemp, @TAB)

 sAddress1 = ItemExtract(2, sTemp, @TAB)

 sAddress2 = ItemExtract(3, sTemp, @TAB)

 sCity = ItemExtract(4, sTemp, @TAB)

 sState = ItemExtract(5, sTemp, @TAB)

 sZip = ItemExtract(6, sTemp, @TAB)

 sPhone = ItemExtract(7, sTemp, @TAB)

 sReport = StrCat(sName, @CRLF, sAddress1, @CRLF)

 if sAddress2 != "" then sReport = StrCat(sReport,
sAddress2, @CRLF)

 sReport = StrCat(sReport, sCity, ", ", sState, " ", sZip,
@CRLF, sPhone)

 Message("Selection", sReport)

 EndIf

 doRedraw=@TRUE

 break ; redisplay the list

 EndIf

 If nCheck > 199

 nCount = 0 ; long enough, reset the count

 nCheck = 0

 nSelect = 0 ; reset selection

 doRedraw=@TRUE

 break ; Redisplay the list

 EndIf

 EndWhile ; nButton == 0

 If doRedraw==@FALSE then return

482

Appendix A: WinBatch Demos

Endwhile ;redo list

return

Chapter 12 Samples

Freehand.wbt
;**

;**

;** [Chapter 12]

;** Freehand.wbt

;** Uses Box functions for freehand drawing routine tracks mouse

;** and mouse button status.

;**

;**

;====== gray scale ========

; -R- -G- -B-

BLACK = " 0, 0, 0" ; Black

DKGRAY = " 64, 64, 64" ; Dark Gray

GRAY = "128, 128, 128" ; Gray

LTGRAY = "192, 192, 192" ; Light Gray

OFFWHITE = "236, 236, 236" ; Off-White

WHITE = "255, 255, 255" ; White

;====== dark colors =======

; -R- -G- -B-

DKBLUE = " 0, 0, 128" ; Dark Blue

DKGREEN = " 0, 160, 0" ; Dark Green

DKRED = "128, 0, 0" ; Dark Red

DKCYAN = " 0, 128, 128" ; Dark Cyan

DKMAGENTA = "128, 0, 128" ; Dark Magenta

BROWN = "128, 96, 48" ; Brown

;====== light colors ======

; -R- -G- -B-

BLUE = " 0, 0, 255" ; Blue

GREEN = " 0, 255, 0" ; Green

483

Introduction to Programming

RED = "255, 0, 0" ; Red

CYAN = " 0, 255, 255" ; Cyan

MAGENTA = "255, 0, 255" ; Magenta

YELLOW = "255, 255, 0" ; Yellow

;======= drawing palette ======

COLOR1 = BLUE

COLOR2 = GREEN

COLOR3 = RED

COLOR4 = CYAN

COLOR5 = MAGENTA

COLOR6 = YELLOW

;======== Generic Initialization ===========;

; allows windows to exit without warning (1)

; + quiet termination (4)

IntControl(12, 5, 0, 0, 0)

;======== Drawing the Main Box ========

BoxesUp("100, 100, 900, 900", @NORMAL)

; Window identifiers

mainID = 1 ; requires successive IDs

drawID = 2

noteID = 3

bExit = 1

bBegin = 2

nColor = 3 ; initial drawing color

;==

; This section creates the main window

;==

BoxColor(mainID, GREEN, 4) ; third param sets shaded background

BoxCaption(mainID, "Freehand.wbt Demo") ; window caption

BoxDrawRect(mainID, " 0, 0, 1000, 1000", 2) ; size is in logical
units

484

Appendix A: WinBatch Demos

BoxTextFont(mainID, "Times", 80, 80, 0 | 0) ; initial font
information

BoxTextColor(mainID, "255, 255, 0") ; initial font color

;==

; And this puts a message in thw window

;==

BoxDrawText(mainID, "245, 500, 700, 600", "Pick [Begin] to start", 0,
0)

;==

; This section creates the fancy banner headline in a box

;==

rectNote = "100, 100, 900, 340" ; set the size of the banner box

BoxNew(noteID, rectNote, 1) ; create the box

BoxColor(noteID, LTGRAY, 0) ; background is Light Gray, no gradient

BoxDrawRect(noteID, "", 2) ; fill the entire banner box with the
background color

;==

; Next create a 3-D outline around the box

;==

; note that all units are logical units relative to the notebox

; which (by default) has a logical size of 1000 x 1000 units

notePenWidthA = 20

rectNoteLine1A = " 0, 0, 1000, 0"

rectNoteline2A = "1000, 1000, 1000, 0"

rectNoteLine3A = " 0, 1000, 1000, 1000"

rectNoteLine4A = " 0, 0, 0, 1000"

; draw the outer outline

BoxPen(noteID, WHITE, notePenWidthA) ; line color top and left

BoxDrawLine(noteID, rectNoteLine1A)

BoxDrawLine(noteID, rectNoteLine4A)

BoxPen(noteID, GRAY, notePenWidthA) ; line color bottom and right

BoxDrawLine(noteID, rectNoteLine2A)

BoxDrawLine(noteID, rectNoteLine3A)

485

Introduction to Programming

; draw the inner outline

notePenWidthB = 10

rectNoteLine1B = " 40, 150, 960, 150"

rectNoteline2B = " 960, 840, 960, 150"

rectNoteLine3B = " 40, 840, 960, 840"

rectNoteLine4B = " 40, 150, 40, 840"

BoxPen(noteID, WHITE, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine2B)

BoxDrawLine(noteID, rectNoteLine3B)

BoxPen(noteID, GRAY, notePenWidthB)

BoxDrawLine(noteID, rectNoteLine1B)

BoxDrawLine(noteID, rectNoteLine4B)

;==

; Now put text in the banner headline box

;==

noteHeight = 400

BoxTextFont(noteID, "Arial", noteHeight, 170, 0); set the headline
font

rectNoteText = " 70, 200, 950, 800"

BoxTextColor(noteID, RED)

; this next line creates the headline text -- this line can be copied

; anywhere in the program where the headline text needs to be changed

BoxDrawText(noteID, rectNoteText, "Freehand Drawing", 1, 4)

;==

; This section creates the Begin and Exit buttons

;==

BoxButtonDraw(mainID, bBegin, "&Begin", "100, 820, 250, 890")

BoxButtonDraw(mainID, bExit, "E&xit", "750, 820, 900, 890")

;==

; Wait for a button to be selected (clicked)

;==

iBox = 0

BoxButtonWait()

While iBox == 0

486

Appendix A: WinBatch Demos

 For x = 1 to 2 ; sequential buttons required

 If BoxButtonStat(mainID, x) then iBox = x

 Next

EndWhile

;==

; poll the buttons to decide which was pressed (clicked)

;==

If iBox

 Switch iBox

 case bExit

 exit

 break

 case bBegin

 gosub DO_DRAW

 break

 EndSwitch

EndIf

exit

;==

; FREEHAND DRAW SUBROUTINE

;==

:DO_DRAW

 nPenResult = 0

 lastPoint = "-1,-1"

 savePoint = "-1,-1"

 BoxCaption(mainID, "Freehand")

 BoxNew(drawID, "0, 0, 1000, 1000", 0)

 BoxPen(drawID, COLOR%nColor%, 1)

 BoxButtonDraw(drawID, bExit, "E&xit", "750, 860, 900, 930")

 BoxDataTag(drawID, "NULL")

 Exclusive(@ON)

 While @TRUE

 BoxDataClear(drawID, "NULL")

 nButton = 0

487

Introduction to Programming

 nUp = 0

 While nButton == 0 ; loop while waiting for mouse event

 nButton = MouseInfo(4)

 nUp = nUp + 1

 if nUp == 10 then lastPoint = "-1,-1"

 EndWhile

 If(nButton & 04) ; left button is down

 Point = MouseInfo(6)

 Point = StrReplace(Point, " ", ",")

 If lastPoint != "-1,-1" then BoxDrawLine(drawID,
"%lastPoint%, %Point%")

 lastPoint = Point

 savePoint = Point

 EndIf

 If(nButton & 01) ; right button is down

 Point = MouseInfo(6)

 Point = StrReplace(Point, " ", ",")

 If savePoint != "-1,-1" then BoxDrawLine(drawID,
"%savePoint%, %Point%")

 savePoint = Point

 EndIf

 If BoxButtonStat(drawID, bExit) == 1

 BoxButtonKill(drawID, bExit)

 break

 EndIf

 Endwhile

 BoxDestroy(drawID)

return

Chapter 13 Samples

SelfTest.wbt
;**

488

Appendix A: WinBatch Demos

;**

;** [Chapter 13]

;** SelfTest.wbt

;** Sample IntControl function.

;**

;**

IntControl(1, "Argument 1", "Argument 2", "Argument 3", "Argument 4")

exit

Chapter 14 Samples

Exercise A.wbt
;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

489

Introduction to Programming

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

490

Appendix A: WinBatch Demos

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

491

Introduction to Programming

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

#DefineFunction
EXACallbackProc(EXA_Handle,EXA_Message,EXA_Name,EXA_EventInfo,EXA_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXA_Message ; Switch based on Dialog Message type

 case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXA_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXA_Handle,MSG_BUTTONPUSHED,@TRUE)

; DialogProcOptions(EXA_Handle,MSG_CHECKBOX,@TRUE)

 return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" OK

; return(RET_DO_DEFAULT)

; case MSG_CHECKBOX ; ID "CheckBox_1" MyCheckBox Click Me

; return(RET_DO_DEFAULT)

 Endswitch ; EXA_Message

492

Appendix A: WinBatch Demos

 return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXACallbackProc

;==

;==

;==

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

"REMEMBER UPDATE EXAProcedure VARIABLE AS BELOW AND DELETE THESE LINES"

EXAProcedure=`EXACallbackProc`

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

"<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---<X>--^!---
<X>--^!---<X>--^!---<X>--^!---"

EXAFormat=`WWWDLGED,6.2`

EXACaption=`Example A`

EXAX=9999 ; -01

EXAY=9999 ; -01

EXAWidth=060

EXAHeight=045

EXANumControls=002

EXAProcedure=`DEFAULT`

EXAFont=`Microsoft Sans Serif|7373|70|34`

EXATextColor=`0|0|128`

EXABackground=`DEFAULT,128|255|255`

EXAConfig=0

EXA001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox,"Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

493

Introduction to Programming

EXA002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXA")

exit

Exercise B.wbt
;**

;**

;** [Chapter 14]

;** Exercise B.wbt

;** Sample Dynamic Dialog - Exercise B.

;**

;**

;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

494

Appendix A: WinBatch Demos

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

495

Introduction to Programming

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

496

Appendix A: WinBatch Demos

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

#DefineFunction
EXBCallbackProc(EXB_Handle,EXB_Message,EXB_Name,EXB_EventInfo,
EXB_ChangeInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXB_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXB_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXB_Handle,MSG_BUTTONPUSHED,@TRUE)

; DialogProcOptions(EXB_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

; case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

; return(RET_DO_DEFAULT)

 EndSwitch ; EXB_Message

497

Introduction to Programming

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXBCallbackProc

;==

;==

;==

EXBFormat=`WWWDLGED,6.2`

EXBCaption=`Example B`

EXBX=9999 ; -01

EXBY=9999 ; -01

EXBWidth=060

EXBHeight=045

EXBNumControls=002

EXBProcedure=`EXBCallbackProc`

EXBFont=`Microsoft Sans Serif|7373|70|34`

EXBTextColor=`0|0|128`

EXBBackground=`DEFAULT,128|255|255`

EXBConfig=0

EXB001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox,"Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXB002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXB")

Message("CheckBox Value on Dialog Exit is", MyCheckbox)

exit

Exercise C.wbt
;**

;**

;** [Chapter 14]

;** Exercise C.wbt

;** Sample Dynamic Dialog - Exercise C.

498

Appendix A: WinBatch Demos

;**

;**

;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

499

Introduction to Programming

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

500

Appendix A: WinBatch Demos

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

501

Introduction to Programming

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

#DefineFunction
EXCCallbackProc(EXC_Handle,EXC_Message,EXC_Name,EXC_EventInfo,EXC_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXC_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXC_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXC_Handle,MSG_BUTTONPUSHED,@TRUE)

 DialogProcOptions(EXC_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

 Case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXC_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXCCallbackProc

;==

;==

;==

EXCFormat=`WWWDLGED,6.2`

502

Appendix A: WinBatch Demos

EXCCaption=`Example C`

EXCX=9999 ; -01

EXCY=9999 ; -01

EXCWidth=060

EXCHeight=045

EXCNumControls=002

EXCProcedure=`EXCCallbackProc`

EXCFont=`Microsoft Sans Serif|7373|70|34`

EXCTextColor=`0|0|128`

EXCBackground=`DEFAULT,128|255|255`

EXCConfig=0

EXC001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox,"Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXC002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXC")

Message("CheckBox Value on Dialog Exit is", MyCheckbox)

exit

Exercise D.wbt
;**

;**

;** [Chapter 14]

;** Exercise D.wbt

;** Sample Dynamic Dialog - Exercise D.

;**

;**

;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

503

Introduction to Programming

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

504

Appendix A: WinBatch Demos

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

505

Introduction to Programming

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

506

Appendix A: WinBatch Demos

#DefineFunction
EXDCallbackProc(EXD_Handle,EXD_Message,EXD_Name,EXD_EventInfo,EXD_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXD_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXD_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXD_Handle,MSG_BUTTONPUSHED,@TRUE)

 DialogProcOptions(EXD_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

 Case MSG_CHECKBOX ; ID "CheckBox_1" CheckBox_1 MyCheckBox

 flag=AskYesNo("Example D","Do you really want to change the
value of this checkbox?")

 If flag==@NO

 ;Set it back to what it was

 cbval=DialogControlGet(EXD_Handle,"CheckBox_1",DC_CHECKBOX)
; get new state

 DialogControlSet(EXD_Handle,"CheckBox_1",DC_CHECKBOX,!cbval)
; put back opposite state

 EndIf

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXD_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXDCallbackProc

;==

;==

;==

EXDFormat=`WWWDLGED,6.2`

EXDCaption=`Example D`

EXDX=9999 ; -01

507

Introduction to Programming

EXDY=9999 ; -01

EXDWidth=060

EXDHeight=045

EXDNumControls=002

EXDProcedure=`EXDCallbackProc`

EXDFont=`Microsoft Sans Serif|7373|70|34`

EXDTextColor=`0|0|128`

EXDBackground=`DEFAULT,128|255|255`

EXDConfig=0

EXD001=`005,005,046,010,CHECKBOX,"CheckBox_1",MyCheckBox,"Click
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXD002=`009,023,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,2,DEF
AULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXD")

Message("CheckBox Value on Dialog Exit is",MyCheckbox)

exit

Exercise E.wbt
;**

;**

;** [Chapter 14]

;** Exercise E.wbt

;** Sample Dynamic Dialog - Exercise E.

;**

;**

;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

508

Appendix A: WinBatch Demos

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

509

Introduction to Programming

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

510

Appendix A: WinBatch Demos

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

#EndSubroutine

;==

;==

;==

#DefineFunction
EXECallbackProc(EXE_Handle,EXE_Message,EXE_Name,EXE_EventInfo,EXE_Chang
eInfo)

 InitDialogConstants() ; Initialize Dialog Constants

511

Introduction to Programming

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch EXE_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(EXE_Handle,MSG_TIMER,1000)

; DialogProcOptions(EXE_Handle,MSG_BUTTONPUSHED,@TRUE)

 DialogProcOptions(EXE_Handle,MSG_CHECKBOX,@TRUE)

 Return(RET_DO_DEFAULT)

; case MSG_BUTTONPUSHED ; ID "PushButton_OK" PushButton_OK

; return(RET_DO_DEFAULT)

 Case MSG_CHECKBOX

 Switch ON_EQUAL

 Case EXE_Name == "CheckBox_1" ; ID "CheckBox_1" CheckBox_1
MyCheckBox

 flag=AskYesNo("Example D","Do you really want to change
the value of this checkbox?")

 If flag==@NO

 ;Set it back to what it was

cbval=DialogControlGet(EXE_Handle,"CheckBox_1",DC_CHECKBOX) ; get new
state

DialogControlSet(EXE_Handle,"CheckBox_1",DC_CHECKBOX,!cbval) ; put back
opposite state

 EndIf

 Return(RET_DO_DEFAULT)

 Case EXE_Name == "CheckBox_2" ; ID "CheckBox_2" CheckBox_2
MyOtherCheckBox

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXE_Name

 Return(RET_DO_DEFAULT)

 EndSwitch ; EXE_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback EXECallbackProc

;==

512

Appendix A: WinBatch Demos

;==

;==

EXEFormat=`WWWDLGED,6.2`

EXECaption=`Example E`

EXEX=9999 ; -01

EXEY=9999 ; -01

EXEWidth=068

EXEHeight=057

EXENumControls=003

EXEProcedure=`EXECallbackProc`

EXEFont=`Microsoft Sans Serif|7373|70|34`

EXETextColor=`0|0|128`

EXEBackground=`DEFAULT,128|255|255`

EXEConfig=0

EXE001=`005,005,056,010,CHECKBOX,"CheckBox_1",MyCheckBox,"&Confirm
Me",1,1,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXE002=`005,023,056,010,CHECKBOX,"CheckBox_2",MyOtherCheckBox,"&But not
me",1,2,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EXE003=`015,039,032,010,PUSHBUTTON,"PushButton_OK",DEFAULT,"&OK",1,3,DE
FAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("EXE")

Message("CheckBox Values
are",StrCat("EXE001=",MyCheckBox,@CRLF,"EXE002=",MyOtherCheckBox))

exit

Exercise F.wbt
;**

;**

;** [Chapter 14]

;** Exercise F.wbt

;** Sample Dynamic Dialog - Exercise F (Extra Credit).

;**

;**

513

Introduction to Programming

;==

;==

;==

#DefineSubRoutine InitDialogConstants()

 ;DialogprocOptions Constants

 MSG_INIT=0 ; The one-time initialization

 MSG_TIMER=1 ; Timer event

 MSG_BUTTONPUSHED=2 ; Pushbutton or Picturebutton

 MSG_RADIOPUSHED=3 ; Radiobutton clicked

 MSG_CHECKBOX=4 ; Checkbox clicked

 MSG_EDITBOX=5 ; Editbox or Multilinebox

 MSG_FILESELECT=6 ; Filelistbox

 MSG_ITEMSELECT=7 ; Itembox

 MSG_COMBOCHANGE=8 ; Combobox/Droplistbox

 MSG_CALENDAR=9 ; Calendar date change

 MSG_SPINNER=10 ; Spinner number change

 MSG_CLOSEVIA49=11 ; Close clicked (Enabled via DialogProcOptions
1002

 MSG_FILEBOXDOUBLECLICK=12 ; Get double-click message on a
FileListBox

 MSG_ITEMBOXDOUBLECLICK=13 ; Get double-click message on an ItemBox

 MSG_COMEVENT=14 ; COMCONTROL Event notification from DialogObject
(NOT DialogProcOptions)

 MSG_MENUITEM=15 ; MenuItem selected

 MSG_MENUITEMINIT=16 ; MenuItem initialized

 MSG_RESIZE=17 ; Dialog resized

 DPO_DISABLESTATE=1000 ; codes -1=GetSetting 0=EnableDialog
1=DisableDialog

 DPO_CHANGEBACKGROUND=1001 ; -1=Get Current otherise bitmap or color
string

 DPO_CHANGESYSMENU=1002 ; -1=Get Current 0=none 1=close 2=close/min
3=close/max 4=close/min/max

 DPO_CHANGETITLE=1003 ; Set/Get Dialog Title - (-1 to get)

 DPO_GETNAME=1004 ; Returns the name associated with a control's
number.

 DPO_GETNUMBER=1005 ; Returns the number associated with a control's
name.

 DPO_GETCLIENTAREA=1007 ; Returns a space delimited list of the width
and height of the client area.

514

Appendix A: WinBatch Demos

 ;DialogControlState Constants

 DCSTATE_SETFOCUS=1 ; Give Control Focus

 DCSTATE_QUERYSTYLE=2 ; Query control's style

 DCSTATE_ADDSTYLE=3 ; Add control style

 DCSTATE_REMOVESTYLE=4 ; Remove control style

 DCSTATE_GETFOCUS=5 ; Get control that has focus

 DCSTATE_MOVEMOUSEOVER=6 ; Move the mouse over the control

 DCSTYLE_DEFAULT=0 ; Set Default Style

 DCSTYLE_INVISIBLE=1 ; Set Control Invisible

 DCSTYLE_DISABLED=2 ; Set Control Disabled

 DCSTYLE_NOUSERDATA=4 ; Note: Setable via DialogControlState function
ONLY SPINNER control only

 DCSTYLE_READONLY=8 ; Sets control to read-only (user cannot type in
data) EDITBOX MULTILINEBOX SPINNER

 DCSTYLE_PASSWORD=16 ; Sets 'password mode' where only *'s are
displayed EDITBOX

 DCSTYLE_DEFAULTBUTTON=32 ; Sets a button as the default button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_DIGITSONLY=64 ; Set edit box to accept digits only EDITMOX
MULTILINEBOX

 DCSTYLE_FLAT=128 ; Makes a 'flat' hyperlink-looking button
PUSHBUTTON PICTUREBUTTON

 DCSTYLE_NOADJUST=256 ; Turns off auto-height adjustment ITEMBOX
FILELISTBOX

 DCSTYLE_TEXTCENTER=512 ; Center text in control VARYTEXT STATICTEXT

 DCSTYLE_TEXTRIGHT=1024 ; Flush-Right text in control VARYTEXT
STATICTEXT

 DCSTYLE_NOSELCURLEFT=2048 ; No selection, cursor left EDITBOX
MULTILINEBOX

 DCSTYLE_NOSELCURRIGHT=4096 ; No selection, cursor right EDITBOX
MULTILINEBOX

 DCSTYLE_SHIELD=8192 ; Display Security Shield icon on button
(Vista/7 and newer) PUSHBUTTON PICTUREBUTTON

 DCSTYLE_MENUCHECK=32768 ; Adds a check mark to the left of a menu
item MENUITEM

 DCSTYLE_MENURADIO=65536 ; Adds a radio button like dot graphic to
the left of a menu item MENUITEM

 DCSTYLE_MENUSEP=131072 ; Separator bar graphic MENUITEM

 DCSTYLE_MENUBREAK=262144 ; column break MENUBAR

515

Introduction to Programming

 ;DialogControlSet / DialogControlGet Constants

 DC_CHECKBOX=1 ; CHECKBOX

 DC_RADIOBUTTON=2 ; RADIOBUTTON

 DC_EDITBOX=3 ; EDITBOX MULTILINEBOX

 DC_TITLE=4 ; PICTURE RADIOBUTTON CHECKBOX PICTUREBUTTON VARYTEXT
STATICTEXT GROUPBOX PUSHBUTTON MENUITEM

 DC_ITEMBOXCONTENTS=5 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXSELECT=6 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_CALENDAR=7 ; CALENDAR

 DC_SPINNER=8 ; SPINNER

 DC_MULTITABSTOPS=9 ; MULTILINEBOX

 DC_ITEMSCROLLPOS=10 ; ITEMBOX FILELISTBOX

 DC_BACKGROUNDCOLOR=11 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT
GROUPBOX PUSHBUTTON ITEMBOX FILELISTBOX DROPLISTBOX SPINNER EDITBOX
MULTILINEBOX

 DC_PICTUREBITMAP=12 ; PICTURE PICTUREBUTTON

 DC_TEXTCOLOR=13 ; RADIOBUTTON CHECKBOX VARYTEXT STATICTEXT GROUPBOX
PUSHBUTTON ITEMBOX FIELLISTBOX DROPLISTBOX SPINNER EDITBOX MULTILINEBOX

 DC_ITEMBOXADD=14 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_ITEMBOXREMOVE=15 ; ITEMBOX FILELISTBOX DROPLISTBOX

 DC_RADIOVALUE=16 ; RADIOBUTTON

 DC_POSITION=17 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 DC_MENUNAMES=18 ; ALL CONTROLS

 DC_HANDLE=19 ; ALL CONTROLS (Except MENUBAR and MENUITEM)

 ;DialogObject constants

 DLGOBJECT_ADDEVENT=1 ; Call dialog callback when the specified event
occurs

 DLGOBJECT_STOPEVENT=2 ; Stop calling dialog callback when an event
previously requested with

 DLGOBJECT_GETOBJECT=3 ; Return an object references to the specified
control

 DLGOBJECT_GETPICTURE=4 ; Create and return an object reference to a
picture object

 ;Return code constants

 RET_DO_CANCEL=0 ; Cancels dialog

 RET_DO_DEFAULT= -1 ; Continue with default processing for control

 RET_DO_NOT_EXIT= -2 ; Do not exit the dialog

 return

516

Appendix A: WinBatch Demos

#EndSubroutine

;==

;==

;==

#DefineFunction
ExtraCallbackProc(Extra_Handle,Extra_Message,Extra_Name,Extra_EventInfo
,EXF_ChangeInfo)

 InitDialogConstants() ; Initialize Dialog Constants

 ON_EQUAL = @TRUE ; Initialize variable ON_EQUAL

 Switch Extra_Message ; Switch based on Dialog Message type

 Case MSG_INIT ; Standard Initialization message

; DialogProcOptions(Extra_Handle,MSG_TIMER,1000)

 DialogProcOptions(Extra_Handle,MSG_BUTTONPUSHED,@TRUE)

; DialogProcOptions(Extra_Handle,MSG_EDITBOX,@TRUE)

 Return(RET_DO_DEFAULT)

 Case MSG_BUTTONPUSHED

 Switch ON_EQUAL

 Case Extra_Name == "PushButton_Browse" ; ID
"PushButton_Browse" PushButton_Browse

 fname=AskFilename("Choose a FileName", "", "All
Files|*.*", "*.*", 1)

 DialogControlSet(Extra_Handle,"EditBox_1", DC_EDITBOX,
fname)

 :CANCEL

 Return(RET_DO_NOT_EXIT) ; don't exit

 Case Extra_Name == "PushButton_OK" ; ID "PushButton_OK"
PushButton_OK

 Return(RET_DO_DEFAULT)

 Case Extra_Name == "PushButton_Cancel" ; ID
"PushButton_Cancel" PushButton_Cancel

 Return(RET_DO_DEFAULT)

 EndSwitch ; Extra_Name

 Return(RET_DO_DEFAULT)

; case MSG_EDITBOX ; ID "EditBox_1" EditBox_1 MyFileName

517

Introduction to Programming

; return(RET_DO_DEFAULT)

 EndSwitch ; Extra_Message

 Return(RET_DO_DEFAULT)

#EndFunction ; End of Dialog Callback ExtraCallbackProc

;==

;==

;==

ExtraFormat=`WWWDLGED,6.2`

ExtraCaption=`Extra Credit Assignment`

ExtraX=9999 ; -01

ExtraY=9999 ; -01

ExtraWidth=254

ExtraHeight=081

ExtraNumControls=005

ExtraProcedure=`ExtraCallbackProc`

ExtraFont=`DEFAULT`

ExtraTextColor=`DEFAULT`

ExtraBackground=`DEFAULT,255|128|0`

ExtraConfig=0

Extra001=`009,007,042,008,STATICTEXT,"StaticText_FileName:",DEFAULT,"Fi
leName:",DEFAULT,1,DEFAULT,"Microsoft Sans
Serif|7373|70|34","0|0|128",DEFAULT`

Extra002=`007,021,192,014,EDITBOX,"EditBox_1",MyFileName,DEFAULT,DEFAUL
T,2,DEFAULT,"Microsoft Sans Serif|7373|70|34","0|0|128","255|128|0"`

Extra003=`209,021,034,014,PUSHBUTTON,"PushButton_Browse",DEFAULT,"Brows
e",2,3,DEFAULT,"Microsoft Sans
Serif|7373|70|34","0|0|128","255|128|64"`

Extra004=`033,055,034,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,4,D
EFAULT,"Microsoft Sans Serif|7373|70|34","0|0|128","255|128|64"`

Extra005=`127,055,034,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cance
l",0,5,DEFAULT,"Microsoft Sans
Serif|7373|70|34","0|0|128","255|128|64"`

ButtonPushed=Dialog("Extra")

518

Appendix A: WinBatch Demos

Message("Selected Filename is",MyFileName)

exit

Chapter 15 Samples

Debug01.wbt
;**

;**

;** [Chapter 15]

;** Debug01.wbt

;** Debugging Sample 01.

;**

;**

EditTestFormat=`WWWDLGED,6.2`

EditTestCaption=`Edit Test (Debug01.wbt)`

EditTestX=025

EditTestY=042

EditTestWidth=142

EditTestHeight=086

EditTestNumControls=006

EditTestProcedure=`DEFAULT`

EditTestFont=`DEFAULT`

EditTestTextColor=`DEFAULT`

EditTestBackground=`DEFAULT,DEFAULT`

EditTestConfig=0

EditTest001=`007,007,128,012,STATICTEXT,"StaticText_1",DEFAULT,"Enter a
string, integer or floating point value
here",DEFAULT,10,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest002=`007,019,128,012,EDITBOX,"EditBox_1",edText,DEFAULT,DEFAULT
,20,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

519

Introduction to Programming

EditTest003=`007,033,128,012,STATICTEXT,"StaticText_2",DEFAULT,"Enter a
password in this field",DEFAULT,30,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest004=`007,047,128,012,EDITBOX,"EditBox_2",pw_Password,DEFAULT,DE
FAULT,40,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

EditTest005=`007,065,050,012,PUSHBUTTON,"PushButton_Test",DEFAULT,"Test
",1,50,32,DEFAULT,DEFAULT,DEFAULT`

EditTest006=`083,065,050,012,PUSHBUTTON,"PushButton_Exit",DEFAULT,"Exit
",0,60,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed = Dialog("EditTest")

Message("Report",
edtTest)

if pw_Password <> ""

 Message("Password", "The password entry is ":pw_Password)

endif

exit

Debug02.wbt
;**

;**

;** [Chapter 15]

;** Debug02.wbt (VariTest.wbt)

;** Demonstrates variable assignments

;**

;**

n = 2

m = 1.01

Message("Result: step 1", "m = " : m : ", n = " : n)

n = n * m

Message("Result: step 2", "m = " : m : ", n = " : n)

n = "now I'm a string"

Message("Result: step 3", "m = " : m : ", n = " : n)

n = "2"

m = "2.02"

520

Appendix A: WinBatch Demos

m * n

a = m * n

Message("Result: step 4", "m = " : m : ", a = " : a)

n = "two"

m = "two point zero two"

a = m + n ; we can confidently expect this step to fail

Message("Result: step 5", "m = " : m : ", a = " : a)

exit

Parts List.lst
Webley Defaminizer 5 2456-3468-8921 27

Finagle Bolix Grinder 2 3905-1298-7892 12B

Acme Jetpack 3 9834-0909-8721 14

Hobart Skyhook 1 6435-2348-0971 8E

Forward Mass Detector 9 3498-3465-1871 5

Dyson Sphere 1 0000-0000-0001 M27-139-235-890

Niven Transporter (Pad model) 3 9872-2317-2345 17A, 18B, 21C

ExternCall.wbt
;**

;**

;** [Chapter 15]

;** ExternCall.wbt

;** Demonstrates calling external .WBT programs as subroutines

;**

;**

nCount = 0

sList = ""

DirChange(DirScript())

; open the source file and return an array of entries

Call('GetData.WBT', '"Parts List.lst" sList nCount')

Message("List count", "Found ":nCount:" items in [":sList:"]")

Call("SortData.WBT", "sList @TAB")

Message("Sort results", "Sorted ":nCount:" items as [":sList:"]")

521

Introduction to Programming

Exit

GetData.wbt
;**

;**

;** [Chapter 15]

;** GetData.wbt

;** Creates a list from the contents of a file.

;** Parameters:

;** param1: file to be searched

;** param2: name of var to return

;** param3: name of var to return number of items in list

;**

If param0 < 3 ; insufficient arguments

 Message("Attention","This script is not meant to use used alone.
It is used by other scripts")

 exit

Endif

If IsNumber(param3) Then exit ; parameter 3 isn't a variable name

If IsNumber(param2) Then exit ; parameter 2 isn't a variable name

If IsNumber(param1) Then exit ; parameter 1 isn't a filename

If FileExist(param1) == 0

 %param2% = "File Error"

 %param3% = 0

 return

Endif

nIndex = 0 ; initialize a count index

sResult = ""

hFileIn = FileOpen(param1, "READ") ; open the input file and get a
handle

While @TRUE

 sTemp = ""

 sLineIn = FileRead(hFileIn)

 If(sLineIn == "*EOF*") Then break

522

Appendix A: WinBatch Demos

 nIndex = nIndex + 1

 sTemp = ItemExtract(1, sLineIn, @TAB)

 sResult = StrCat(sResult, sTemp, @TAB)

EndWhile

FileClose(hFileIn) ; close the input file

%param2% = sResult ; assign the result string to param2

%param3% = nIndex ; assign the count to param3

Drop(sLineIn, nIndex, sResult, sTemp) ; discard local variables

Return

SortData.wbt
;**

;**

;** [Chapter 15]

;** SortData.wbt

;** Demonstrates sorting a list using ItemSort

;**

;**

If param0 < 2 Then exit

If IsNumber(param1) Then exit ; should be list of data

If IsNumber(param2) Then exit ; should be char (delimiter)

sList = ItemSort(%param1%, %param2%)

return

Debug03a.wbt
;**

;**

;** [Chapter 15]

;** Debug03a.wbt

;** Demonstrates a long execution script with error

;**

;**

listPrimes = ""

523

Introduction to Programming

nCount = 0

For i = 1 to 1000000

 bPrime = @TRUE

 For j = 2 to Sqrt(i)

 if(i / j) == ((i * 1.0) / (j * 1.0)) then bPrime = @FALSE

 Next

 If bPrime then

 nCount = nCount + 1

 listResult = StrCat(listPrimes, ", ", i)

 EndIf

Next

Message("Found ":nCount:" primes", listPrimes)

Exit

Debug03b.wbt
;**

;**

;** [Chapter 15]

;** Debug03b.wbt

;** Demonstrates Debug Function on a long execution script with error

;**

;**

Debug(@ON)

listPrimes = ""

nCount = 0

For i = 1 to 1000000

 bPrime = @TRUE

 For j = 2 to Sqrt(i)

 if(i / j) == ((i * 1.0) / (j * 1.0)) then bPrime = @FALSE

 Next

 If bPrime then

 nCount = nCount + 1

 listResult = StrCat(listPrimes, ", ", i)

 EndIf

Next

524

Appendix A: WinBatch Demos

Message("Found ":nCount:" primes", listPrimes)

Exit

Debug03c.wbt
;**

;**

;** [Chapter 15]

;** Debug03c.wbt

;** Demonstrates DebugTrace on a long execution script with error

;**

;**

listPrimes = ""

nCount = 0

For i = 1 to 1000000

 bPrime = @TRUE

 For j = 2 to Sqrt(i)

 if(i / j) == ((i * 1.0) / (j * 1.0)) then bPrime = @FALSE

 Next

 If bPrime then

 DebugTrace(@ON, "TRACE.TXT")

 nCount = nCount + 1

 listResult = StrCat(listPrimes, ", ", i)

 DebugTrace(203, listprimes) ; variable info as string

 Else

 DebugTrace(@OFF)

 EndIf

Next

Message("Found ":nCount:" primes", listPrimes)

exit

Debug03d.wbt
;**

;**

;** [Chapter 15]

;** Debug03d.wbt

;** Demonstrates Pause on a long execution script with error

;**

525

Introduction to Programming

;**

listPrimes = ""

nCount = 0

For i = 1 to 1000000

 bPrime = @TRUE

 For j = 2 to Sqrt(i)

 If(i / j) == ((i * 1.0) / (j * 1.0)) then bPrime = @FALSE

 Next

 If (i == 100) then Pause("Checkpoint", "[" : listprimes : "]")

 If bPrime then

 nCount = nCount + 1

 listResult = StrCat(listPrimes, ", ", i)

 EndIf

Next

Message("Found ":nCount:" primes", listPrimes)

exit

Chapter 16 Samples

PlatformInfo.wbt
;**

;**

;** [Chapter 16]

;** PlatformInfo.wbt

;** Demonstrates WinVersion and WinMetrics functions

;**

;**

v = WinVersion(5)

; Determine Platform Version

Platform="Unknown"

If v=="1-4-0" then Platform="Windows 95"

If v=="1-4-10" then Platform="Windows 98"

If v=="1-4-90" then Platform="Windows ME"

If v=="2-3-51" then Platform="Windows NT 3.51"

If v=="2-4-0" then Platform="Windows NT 4.0"

526

Appendix A: WinBatch Demos

If v=="2-5-0" then Platform="Windows 2000"

If v=="2-5-1" then Platform="Windows XP"

If v=="2-5-2" then Platform="Windows 2003 Server"

If v=="2-6-0" then Platform="Windows Vista"

If v=="2-6-1" then Platform="Windows 7"

; Determine Bitness

bit = WinMetrics(-7)

If bit==2 then bitness="64 bit"

Else bitness="32 bit"

; Determine Service Pack

csdver = WinVersion(3)

Message("Windows Version", platform : " " : bitness : " " : csdver)

exit

NetTest.wbt
;**

;**

;** [Chapter 16]

;** NetTest.wbt

;** Determines Windows network configuration

;**

;**

sNetwork = NetInfo(0)

sNetClient = NetInfo(1)

nCount = ItemCount(sNetClient, @TAB)

Message(sNetwork:" supporting ":nCount:" networks(s)",sNetClient)

AddExtender("WWWNT34I.DLL")

sUser = wntUserInfo(0)

sDomain = wntUserInfo(1)

Message("Logon info", sUser:" logged on to ":sDomain)

;Return a list of all servers and workstations

527

Introduction to Programming

ALLSERVERS = -1

listServers = wntServerlist("", "", ALLSERVERS) ;Specify -1 for all
servers and workstations

sServer = AskItemList("Workstations and Servers", listServers, @TAB,
@SORTED, @SINGLE)

; Return information about a server's type.

nServerInf = wntServiceInf(sServer)

sResult = ""

For iStep = 0 to 22

 If((2 ** iStep) & nServerInf)

 gosub add_info

 EndIf

Next

Message(sServer:" identified as:", sResult)

exit

;;;

:add_info

If(sResult != "") then sResult = sResult : @CRLF

sResult = sResult : 2 ** iStep : @TAB

Switch iStep

 case 0

 sResult = sResult : "All LAN Manager workstation"

 break

 case 1

 sResult = sResult : "All LAN Manager server"

 break

 case 2

 sResult = sResult : "Any server running with Microsoft SQL
Server"

 break

 case 3

 sResult = sResult : "Primary domain controller"

 break

 case 4

 sResult = sResult : "Backup domain controller"

 break

528

Appendix A: WinBatch Demos

 case 5

 sResult = sResult : "Server running the timesource service"

 break

 case 6

 sResult = sResult : "Apple File Protocol servers"

 break

 case 7

 sResult = sResult : "Novell servers"

 break

 case 8

 sResult = sResult : "LAN Manager 2.x Domain Member"

 break

 case 9

 sResult = sResult : "Server sharing print queue"

 break

 case 10

 sResult = sResult : "Server running dialin service"

 break

 case 11

 sResult = sResult : "Xenix server"

 break

 case 12

 sResult = sResult : "Windows NT (either workstation or server)"

 break

 case 13

 sResult = sResult : "Server running Windows for Workgroups"

 break

 case 14

 sResult = sResult : "Microsoft File and Print for Netware"

 break

 case 15

 sResult = sResult : "Windows NT Non-DC server"

 break

 case 16

 sResult = sResult : "Server that can run the browser service"

 break

 case 17

529

Introduction to Programming

530

 sResult = sResult : "Server running a browser service as backup"

 break

 case 18

 sResult = sResult : "Server running the master browser service"

 break

 case 19

 sResult = sResult : "Server running the domain master browser"

 break

 case 20

 sResult = sResult : "Unknown service"

 break

 case 21

 sResult = sResult : "Unknown service"

 break

 case 22

 sResult = sResult : "Windows 95 or newer"

 break

EndSwitch

return

	Table Of Contents
	Introduction : Becoming A Programmer
	There will be a test…

	Chapter 1 : The Golem Principle
	Basics of Programming
	How Computer Applications Work
	Lingua Cyber
	The Sorcerer’s Apprentice
	Principles of Designing Applications
	Step One: Defining Objectives
	Step Two: Defining Communications
	Step Three: Defining Tasks
	Step Four: Writing the Code
	Step Five: Testing, Testing, and Retesting
	Step Six: Getting Outside Opinions
	Step Seven: Documenting

	Summary

	Chapter 2 : The Programmer's Workroom
	The Integrated Development Environment
	How To Use This Book
	Compiled versus Interpreted Programs
	A Brief History of the IDE
	An Introduction to the WinBatch IDE

	A First Program: Hello, World
	WinBatch Studio Features and Tools
	File Operations
	Cut, Copy, and Paste Operations
	Undo and Redo Operations
	Find, Find Next, and Replace Operations
	Bookmark Operations
	Tools
	Debugging Tools

	Summary

	Chapter 3 : Dialogs and the Dialog Editor
	Holding A Formal Conversation
	An Introduction to the Dialog Editor
	Predefined Dialogs
	WIL Dialog Editor
	A Sample Dialog: WILDialog.wbt
	Dialog Controls
	Pushbuttons <pushbutton>
	Radiobuttons <radiobutton>
	Checkboxes <checkbox>
	Edit Boxes <editbox>
	Static (Fixed) Text <statictext>
	Variable Text <varytext>
	Item (List) Boxes <itembox>
	File List Boxes <filelistbox>
	Calendar <calendar>
	ComControl <comcontrol>
	The DropList Box <droplistbox>
	The GroupBox control <groupbox>
	The Spinner Control <spinner>
	The Multi-Line Box <multilinebox>
	The Picture Button Control <picturebutton>
	The Picture Control <picture>

	Menus
	Tab Order
	Summary

	Chapter 4 : Computer Vocabulary – Part I
	Simple Nouns – Data Types and Variables
	Variables versus Constants
	WinBatch Data Types
	Integer Constants
	Floating-Point Constants
	String Constants
	Array
	Huge Numbers

	Predefined Constants
	Predefined String Constants
	Predefined Floating-Point Constants

	WinBatch Program Variables
	Variable Names
	String Variable Conversion
	Substitution
	Lists
	Keywords
	Summary

	Chapter 5 : Computer Vocabulary – Part II
	Simple Verbs – Operators and Operations
	Math Operators
	Grouping Operators ()
	The Assignment Operator (=)
	The Addition and Subtraction Operators (+ and –)
	The Multiplication and Division Operators (* and /)
	The Modulus Operator (mod)
	The Exponential Operator (**)
	Logical Operators
	The Logical AND Operator (&&)
	The Logical OR Operator (||)
	The Logical NOT Operator (!)

	Relational Operators
	The Equality and Inequality Operators (== and != or <>)
	The Greater-Than and Less-Than Operators (>, >=, <, and <=)

	Bitwise Operators
	The Left-Shift and Right-Shift Operators (<< and >>)
	The Bitwise AND, OR, and XOR Operators (&, |, and ^)
	The Bitwise NOT Operator (~)

	Precedence and Evaluation Order
	Comments
	Unary Operators (Variable Reference Operators)
	Binary String Operations
	Summary

	Chapter 6 : Computer Vocabulary – Part III
	Strings and Text Operations
	String-Manipulation Functions
	String-Parsing Operations
	The ParseData Function
	The StrScan and StrSub Functions
	The ItemCount and ItemExtract Functions
	Using the ArrayFileGet function

	Differences in the String-Parsing Techniques
	Search-and-Replace Operations
	The StrIndex and StrIndexNc Functions
	The StrReplace Function
	Selective Search and Replace

	String-Conversion Operations
	Other String Conversions
	String-Comparison Operations
	Other String Operations
	The StrCharCount Function
	The StrFill Function
	The StrFix Functions
	The StrTrim Function
	Additional String Functions

	Lists and List-Selection Operations
	List Initialization
	List Creation
	List Display
	List-Selection Handling
	Lists of Lists
	List Item Removal

	Passwords
	Keyboard input
	Summary

	Chapter 7 : A Toolkit for Operations
	Functions and Subroutines
	Functions
	StrCat
	Syntax:
	Parameters:
	Returns:
	User Defined Functions

	Subroutines
	The gosub Statements
	The Subroutines
	Subprocedure Execution

	External Batch Files
	The First External Program
	The Second External Program

	Executable Programs
	Summary

	Chapter 8 : Going With The Flow
	Controlling Operations
	Branching and Program Control Mechanisms
	Goto and Gosub Branches
	Forms of controlled branching
	If Decisions
	True or False
	Simple Tests
	Compound Tests
	Complex Tests
	Nested If..Else..Endif Statements

	Switch/Case Decisions
	Fall-Through Execution
	Duplicate Case Statements
	Default Cases
	Loops
	For Loops
	ForEach Loop
	For Loop Interruption
	While Loops
	While Loops Interruption

	Summary

	Chapter 9 : It's All In the Numbers
	Mathematical Operations
	Simple Numerical Manipulations
	The Abs and Fabs Functions
	The Average Function
	The Ceiling and Floor Functions
	The Decimals Function
	The Int Function
	The Min and Max Functions

	Number Testing
	Pseudo-Random Numbers

	Large and Transcendental Numbers
	The Exp Function
	The LogE Function
	The Log10 Function
	The Sqrt Function

	Trigonometric Operations
	The Sin, Cos, and Tan Functions
	The ASin, ACos, and ATan Functions
	The ASin Function
	The ACos Function
	The ATan Function
	The Hyperbolic Functions: SinH, CosH and TanH

	Date and Time Operations
	Date/Time Format
	The TimeDate Function
	The TimeYmdHms Function
	The TimeJulianDay Function and the Day of the Week
	The TimeJulToYmd Function
	Time-Difference Calculations
	Pause and Wait Functions

	Mathematics in the Real World
	Accepting Input Variants

	Doing the Math
	Formatting Values
	Formatting Currency
	Formatting a Date

	Summary

	Chapter 10 : Shoe Boxes and File Cabinets
	Data Storage and File Operations
	File and Directory Concepts
	Hard Drive Management
	A Utility for Directory Operations
	Planning the Utility
	File Specification
	Drive/Directory Specification
	Exploring the CallFileList Utility

	The Windows Common File Dialog
	Features of the Common File Dialog
	Invoking the Common File Dialog
	The Label Parameter
	The Directory Parameter
	The Filetypes Parameter
	The Default Filename Parameter
	The Flag Parameter
	Returning a File Name

	Directory Information Functions
	Converting Long and Short File Names
	Locating Default Directories
	Getting Drive Information
	The DiskScan Function
	The DiskSize and DiskFree Functions
	Huge Numbers
	File Management
	A Shortcut for Lists
	File-Operation Functions
	Handling File I/O
	The FileOpen Function
	The FileRead Function
	The FileWrite Function
	The FileClose Function
	Manipulating Files
	The FileAppend Function
	The FileCopy Function
	The FileMove Function
	The FileRename Function
	The FileCompare Function
	The FileDelete Function
	Additional File Functions

	Binary File Operations
	Summary

	Chapter 11 : Windows and GUI Operations
	Paints, Pens, and Window Boxes
	Creating a Window
	Window Coordinates
	Labeling the Window
	Windows within Windows
	Displaying Text
	Font Styles
	Pitch and Family
	Displaying the Message

	Adding Buttons
	A Quick Review
	More About Colors
	Drawing in a Window
	An Alternative to BoxButtonWait
	The BoxDrawCircle and BoxDrawRect Functions
	Drawing Stack Management
	Partial Clearing
	Formatting Text In Windows
	Summary

	Chapter 12 : Mousing Around
	Getting Away From the Keyboard
	Mouse Operations in Windows
	Forcing Mouse Operations
	Tracking the Mouse

	Summary

	Chapter 13 : Poking Inside The Box
	The IntControl Functions
	The Internal Control Test Function
	General-Purpose Functions
	Window Interactions and Window Handles
	System Font Selection
	File Operations
	File Moves
	File-Sharing Mode

	File List Box Settings
	General List Box Settings
	Application Control Functions
	Windows Messages

	WinBatch Control
	Exit Code
	Icon States
	Program File Names
	WIL Termination Codes

	Windows Restarting
	Windows System Restart

	Application Closing
	Error Messages
	Error Handling
	CreateProcess Flags
	Memory Access
	Input Timing and Waits
	Timeouts
	The SendKey Function

	Miscellaneous Operations
	Language Control
	System Menus

	Summary

	Chapter 14 : Dynamic Dialogs, Menus, Callbacks
	Making Dynamic Dialogs
	Adding Dialog Procedure code

	/
	Functions vs Subroutines
	Exercise_C
	Exercise_D
	Exercise_E
	Exercise_F
	Summary

	Chapter 15 : When Things Go Wrong*
	Debugging Applications
	Learning to Debug
	Debugging in an IDE
	Debugging Tools
	Debugging during Execution
	Tracing Execution Step by Step
	Terminating Execution

	Debugging Options
	Debug
	DebugTrace
	Syntax:
	Parameters:
	Returns:

	Modes:
	Mode Option Flags:
	Immediate Action Codes:
	Message or Pause Statements
	DebugData

	Debugging as a Process
	Debug Step 1: Run the Program
	Debug Step 2: Test the Elements
	Debug Step 3: Watch Branches, Tests, and Variable Tests

	Unavoidable Bugs
	Summary

	Chapter 16 : WinBatch Extenders
	Adding Extended and Custom Functions
	The WILX Language Extender
	Getting Library Information
	Converting between Numeric Systems
	Accessing Drives
	Accessing Windows API Functions
	Verifying Credit Card Numbers
	Using Utility Functions

	Network Extenders
	Identifying the Network
	Windows Platform Version
	Querying across the Network
	ADSI Extender: WWADS44I.DLL
	Compiler Options for WIL Extenders
	Custom Extender DLLs
	Summary

	Appendix A : WinBatch Demos
	Real World WIL Scripts
	Chapter 1 Samples
	WordCnt.wbt

	Chapter 2 Samples
	Hello World.wbt

	Chapter 3 Samples
	AskYesNo.wbt
	AskLine.wbt
	WILDialog.wbt
	PushButton.wbt
	RadioButton.wbt
	CheckBox.wbt
	EditBox.wbt
	Listbox.wbt
	FileListBox.wbt
	ComControl.wbt

	Chapter 4 Samples
	StringTest.wbt
	ArrayTest.wbt
	HugeMath.wbt
	VariTest.wbt
	ListTest.wbt

	Chapter 5 Samples
	MathTest.wbt
	SimpleCalculator.wbt

	Chapter 6 Samples
	SearchList.txt
	SearchTest.wbt
	SearchTest2.wbt
	SearchTest3.wbt
	SearchTest4.wbt
	StrIndex.wbt
	Blake.txt
	SearchReplace.wbt
	StrCmp.wbt
	RelationalOperators.wbt
	Parts.lst
	ListSelection.wbt
	ListSelection2.wbt
	Password.wbt
	WaitForKey.wbt

	Chapter 7 Samples
	Music.txt
	HyperLink.wbt
	GetData.wbt
	Parts.lst
	ExternCall.wbt
	SortData.wbt
	Run_EXE.wbt

	Chapter 8 Samples
	Logic.wbt
	Select1.wbt
	Select2.wbt
	Select3.wbt
	Prime.wbt
	ForEach.wbt
	Prime2.wbt

	Chapter 9 Samples
	Average.wbt
	Floor_Ceiling.wbt
	Decimals.wbt
	Min_Max.wbt
	TestNumber.wbt
	Random.wbt
	Exponential.wbt
	LogE.wbt
	Log10.wbt
	SquareRoot.wbt
	Trig.wbt
	ArcSin.wbt
	ArcCosine.wbt
	ArcTangent.wbt
	HyperTrig.wbt
	TimeCheck.wbt
	TimeCheck2.wbt
	TimeCheck3.wbt
	Mortgage.wbt
	FormatCurrency.wbt

	Chapter 10 Samples
	CallFileList.wbt
	DirTest.wbt
	DirTest2.wbt
	Free Disk Space.wbt
	FormatNumber.wbt
	Phone.lst
	ShowList.wbt
	PhoneList.wbt
	Phone.lst
	FileAttr.wbt
	Binary.wbt

	Chapter 11 Samples
	Hello Windows.wbt
	Progress.wbt
	Text Fonts.wbt
	Colors.wbt
	Buttons.wbt
	Lines.wbt
	Shapes.wbt
	Phone.lst
	PhoneListBox.wbt

	Chapter 12 Samples
	Freehand.wbt

	Chapter 13 Samples
	SelfTest.wbt

	Chapter 14 Samples
	Exercise A.wbt
	Exercise B.wbt
	Exercise C.wbt
	Exercise D.wbt
	Exercise E.wbt
	Exercise F.wbt

	Chapter 15 Samples
	Debug01.wbt
	Debug02.wbt
	Parts List.lst
	ExternCall.wbt
	GetData.wbt
	SortData.wbt
	Debug03a.wbt
	Debug03b.wbt
	Debug03c.wbt
	Debug03d.wbt

	Chapter 16 Samples
	PlatformInfo.wbt
	NetTest.wbt

